Abstract
Quantitative analysis of MR images is becoming increasingly important as a surrogate marker in clinical trials in multiple sclerosis (MS). This paper describes a fully automated model-based method for segmentation of MS lesions from multi-channel MR images. The method simultaneously corrects for MR field inhomogeneities, estimates tissue class distribution parameters and classifies the image voxels. MS lesions are detected as voxels that are not well explained by the model. The results of the automated method are compared with the lesions delineated by human experts, showing a significant total lesion load correlation and an average overall spatial correspondence similar to that between the experts.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Evans, A.C., Frank, J.A., Antel, J., Miller, D.H.: The role of MRI in clinical trials of multiple sclerosis: Comparison of image processing techniques. Annals of Neurology 41(1), 125–132 (1997)
Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging 13(4), 716–724 (1994)
Johnston, B., Atkins, M.S., Mackiewich, B., Anderson, M.: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Transactions on Medical Imaging 15(2), 154–169 (1996)
Udupa, J.K., Wei, L., Samarasekera, S., Miki, Y., van Buchem, M.A., Grossman, R.I.: Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Transactions on Medical Imaging 16(5), 598–609 (1997)
Zijdenbos, A., Evans, A., Riahi, F., Sled, J., Chui, J., Kollokian, V.: Automatic quantification of multiple sclerosis lesion volume using stereotaxic space. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 439–448. Springer, Heidelberg (1996)
Zijdenbos, A., Forghani, R., Evans, A.: Automatic quantification of MS lesions in 3d MRI brain data sets: Validation of INSECT. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 439–448. Springer, Heidelberg (1998)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automatic segmentation of brain tissues and MR bias field correction using a digital brain atlas. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1222–1229. Springer, Heidelberg (1998)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated bias field correction and tissue classification of MR images of the brain using a digital atlas. IEEE Transactions on Medical Imaging (October 1999)
Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Transactions on Medical Imaging 16(3), 238–251 (1997)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated modelbased tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging (October 1999)
Li, S.Z.: Markov Random Field Modeling in Computer Vision. Computer Science Workbench. Springer, Heidelberg (1995)
European project on brain morphometry (BIOMORPH, EU-BIOMED2 project nr. BMH4-CT96-0845, 1996–1998)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)
Bello, F., Colchester, A.C.F.: Measuring global and local spatial correspondence using information theory. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 964–973. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Van Leemput, K., Maes, F., Bello, F., Vandermeulen, D., Colchester, A., Suetens, P. (1999). Automated Segmentation of MS Lesions from Multi-channel MR Images. In: Taylor, C., Colchester, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI’99. MICCAI 1999. Lecture Notes in Computer Science, vol 1679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10704282_2
Download citation
DOI: https://doi.org/10.1007/10704282_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66503-8
Online ISBN: 978-3-540-48232-1
eBook Packages: Springer Book Archive