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Abstract. Quantitative analysis of MR images is becoming increasingly
important as a surrogate marker in clinical trials in multiple sclerosis
(MS). This paper describes a fully automated model-based method for
segmentation of MS lesions from multi-channel MR images. The method
simultaneously corrects for MR field inhomogeneities, estimates tissue
class distribution parameters and classifies the image voxels. MS lesions
are detected as voxels that are not well explained by the model. The re-
sults of the automated method are compared with the lesions delineated
by human experts, showing a significant total lesion load correlation and
an average overall spatial correspondence similar to that between the
experts.

1 Introduction

The role of magnetic resonance (MR) imaging in assessing the progression of
multiple sclerosis (MS) and in monitoring the effect of a drug therapy is of in-
creasing importance. This is caused by the higher sensitivity and objectivity of an
MR-based surrogate index compared to traditional clinical disability scales [1],
in combination with the widespread availability of MR imaging.

In clinical trials, manual analysis of the MR images by human experts is too
time-consuming because of the large amounts of data involved. Furthermore, the
inter- and intra-observer variability associated with manual delineations compli-
cates the analysis of the results. Finally, it is not clear how a human rater
combines information obtained from the different channels when multi-spectral
MR data are examined.

Therefore, considerable efforts have been made by the medical imaging com-
munity to come up with fast automated methods that produce more objective
and reproducible results [2,3,1]. However, most of these techniques still require
some human interaction and/or ad hoc processing steps, which can make the
results not fully objective. Zijdenbos et. al [5,6] proposed and validated a fully
automated pipeline for MS lesion segmentation from T1-, T2- and PD-weighted

C. Taylor, A. Colchester (Eds.): MICCAI’99, LNCS 1679, pp. 11-21, 1999.
© Springer-Verlag Berlin Heidelberg 1999



12 Koen Van Leemput et al.

images. However, they used a fixed classifier that must be retrained in cases
where different scanner types or pulse sequences produce contrast variations.

We present a fully automated technique for segmenting MS lesions from T1-,
T2-, and PD-weighted MR images that automatically retrains the classifier. More
specifically, a model-based iterative algorithm is used that simultaneously cor-
rects for MR field inhomogeneities, estimates tissue class distribution parame-
ters, and classifies the image voxels. The MS lesions are detected as voxels that
are not well explained by the model.

The paper is organized as follows. The method is explained in section 2. Sec-
tion 3 presents a validation of the automatic lesion segmentation by comparing
it with the delineations of human experts. We discuss the results in section 4
and briefly formulate our conclusions in section 5.

2 Method

2.1 Model-Based Segmentation of Normal MR Images of the Brain

Recently, we described a model-based method for fully automated classification
of MR images of normal brains [7,8]. Since we will build on this method in the
rest of this paper, we briefly describe it here.

Suppose that there are J tissue types or so-called classes present in an
MR image of the brain. Let the intensity of voxel i be denoted as y;, then
v =4{y1,-.-,¥i,...,yn} describes the observed intensities where N is the to-
tal number of voxels. An often-used simple model for the intensity distribu-
tion of a voxel ¢ that belongs to class j is a normal distribution with pa-
rameters mean f; and variance o7, grouped in 6; = {u;,07}. MR images of-
ten suffer from an imaging artifact that introduces a spatially smoothly vary-
ing intensity inhomogeneity or so-called bias field in the images. We model
the bias field in image y as a linear combination ), cx¢r(x) of K smoothly
varying basis functions ¢y (x), where x denotes the spatial position. With this
model, the intensity distribution of a voxel ¢ that belongs to class j is given by
p(yi | 1i=4,0;,C) = Go, (i — ptj — Y, ckPr(xi)) where G, () denotes a zero-mean
normal distribution with variance o2, I; € {1,...,7,...,J} denotes the class to
which voxel i belongs, and C' = {cy,...,cx} contains the bias field parameters.
Assuming that the tissue types of the voxels are independently sampled from
the J classes with some known probability p(I;=j), the overall model becomes

p(y 1 0,C) =11, p(yi | 0,C) where

p(yi | 6,C) = p(y: | [i=j,0;, C)p(Ii=j) (1)
J
and @ = {61,...,0;} denotes all the normal distribution parameters.
As shown in [7], assessing the maximum likelihood (ML) model parame-

ters {0, C'} given the observed intensities y results in an iterative so-called Gen-
eralized Expectation-Maximization (GEM) algorithm that interleaves the fol-
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lowing equations:
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This algorithm interleaves the following 3 steps until convergence: classifica-
tion of the voxels (equation 2), estimation of the normal distribution parameters
(equations 3 and 4), and estimation of the bias field (equation 5).

As described in [7], the method can be fully automated by introducing a
digital brain atlas that contains spatially varying prior probabilities for gray
matter, white matter and csf. After affine registration of the study image with a
T1 template associated with the atlas, these prior probability maps can be used
to initialize the algorithm, which makes the method fully automated. Addition-
ally, the atlas spatially constrains the classification since it contains a spatially
varying prior p(I; = j) that is used in equation 2.

Previously, we described the algorithm and its practical implementation in
more detail. The interested reader is referred to [7,3]; suffice it here to say that
the method is easily extended to multi-spectral MR images by substituting the
normal distributions with multi-variate normal distributions with mean p; and
covariance matrix ;.

2.2 Adaptation for Automated MS Lesion Segmentation

The simple mixture model described above works satisfactorily for MR images of
normal brains. However, it does not include a model for MS lesions. Therefore,
those lesions could be detected as voxels that are not well explained by the
mixture model. We adopt the approach that was proposed by Guillemaud and
Brady [9] for modeling non-brain tissues in MR images by adding a uniform
intensity distribution to the mixture model, i.e. equation 1 is substituted by

p(yi [6,C) = p(yi | [i=4,6;, C)p(Ti=j) + Ap(Ti=reject)
J

where A is a small constant that is defined by the condition that the integral
over all the intensities is unity.

Similar to the approach of Guillemaud and Brady, it can be shown that
equations 2, 3 and 4 remain valid, provided that the new rejection class is added
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to equation 2. Voxels that are not well explained by the normal distributions,
such as MS lesions, are pushed into the uniform rejection class. Also equation 5
for the bias estimation remains unchanged except that the weights w are now
only calculated with respect to the normal distributions. That is, voxels that are
rejected from the normal distributions have a zero weight for the estimation of
the bias field.

Almost 95 % of the MS lesions are located inside white matter. This infor-
mation can be added to the model by assigning the atlas prior probability map
of white matter to p(I;=reject). Besides this spatial constraint, additional in-
tensity constraints can be added. We use multi-spectral MR images that consist
of T1-, T2- and PD-weighted images. MS lesions have an intensity between that
of white matter and csf in T1, and appear hyper-intense in T2 and PD. We
therefore exclude voxels with an intensity darker than the mean of csf in T1 or
darker than the mean of gray matter in T2 and PD from the rejection class.

Upon convergence of the adapted GEM algorithm, a classification of the
voxels is obtained along with an estimation of the parameters 6 of the normal
distributions and the bias field parameters C'. The MS lesions can be expected
to be found in the rejection class.

2.3 Post-Processing

In practice, the rejection class does not contain the more subtle MS lesions,
while on the other hand, non-lesion voxels that are not well explained by the
normal distributions also end up in the rejection class. We therefore add a post-
processing step in order to decrease the number of false positives and false neg-
atives.

Final Classification Rule Given a single normal distribution with mean u;
and variance 032-, an intensity y; can be said to be abnormal with respect to this
distribution if its so-called mahalanobis-distance d} = (y; — p;)/0; exceeds a
predefined threshold. In the case of a mixture of normal distributions, however,
assessing the abnormality of an intensity y; is more involved. Intuitively, an
intensity is abnormal if the probability that it is generated by the mixture model

is small, i.e. when the condition

> Goy(yi—pi — > extr(w))p(li=j) <  rp(Ii=lesion)
J k

holds with k a small threshold. However, this would give bad results since a voxel
that belongs to a class with a small variance is only detected as abnormal if its
mahalanobis-distance is very large compared to a voxel belonging to a class with
a large variance. The same rationale also explains the false positives and false
negatives in the rejection class of the adapted GEM algorithm. Furthermore, it
is not clear how x should be chosen.
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Instead, we weight each normal distribution with its variance, i.e. a voxel is
labeled as MS lesion if the condition

ZUjGUj (ys — 5 — ch¢k(mi))p(f’i:j) < rwp(Ii=lesion) (6)
J k

holds. The meaning of x is now clear: it indirectly defines a mahalanobis-distance
threshold above which a voxel is detected as abnormal, independent of the vari-
ance of the classes. This can be written more explicitly by x=1/v/2rexp(—0.5T?)
with 7" a mahalanobis threshold that we experimentally set to v/3.

Given the parameters 6§ and C as calculated by the GEM algorithm, vox-
els where equation 6 holds, are classified as MS lesions. The other voxels are
classified following equation 2.

Markov Random Fields Besides MS lesions, other voxels exist that are not
well explained by the mixture model and, as a result, are misclassified as MS
lesion. This is typically true for partial volume voxels along the sulci. Such
misclassifications could be discarded by only withholding lesions at locations
where the white matter a priori map exceeds a certain threshold (cf Zijdenbos
et al. [5]), but this method is too crude in our experience.

Instead, we incorporate contextual information in the final segmentation pro-
cess by making use of Markov-Random-Fields (MRF’s). The segmentation I"
is assumed to be the realization of a random process where the probability
that voxel ¢ belongs to class j depends on the classification of its neighbors.
The Hammersley-Clifford theorem states that the configurations of such a ran-
dom field obey the distribution p(I') = Z lexp(—U(I')) where U(I') is an
energy function and Z is a normalization constant. We use the Potts model:
U(I') = >2; 22 Br, jui,; where u;; counts the number of neighbors of voxel i
that belong to class j and §;;,1 < 1,7 < J are MRF parameters. We estimated
these MRF parameters from an image that was manually labeled into grey mat-
ter, white matter, MS lesions, csf and non-brain tissues, using a histogramming
technique [10]. Since the slice thickness in MRI can vary widely, we only use
the 8 in-plane neighbors, although a full 3D neighborhood could also be used if
a manual segmentation exists to estimate the appropriate 3D MRF parameters.

We incorporate contextual information in the final classification process by
using the so-called Iterated-Conditional-Modes algorithm (ICM) [L1]. More
specifically, the prior probability that voxel ¢ belongs to class j depends on
the classification of its neighbors: p(I3=j) ~ exp(— >_, Br, jui,;) This prior re-
places the atlas in the post-processing step, except for p(I;=lesion) where it is
multiplied with the atlas prior probability for white matter. Starting from the
segmentation obtained with the final classification rule as described above, we
calculate p(I;=j) and re-apply the same rule with the updated prior. This is
repeated until the classification stabilizes, for which 8 iterations are sufficient in
our experience.
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3 Results on BIOMORPH MS Data

As part of the BIOMORPH project [12], we analyzed 12 serial scans from each
of 20 MS patients, where each scan contained low-resolution T1-, T2- and PD-
weighted images (24 axial 256x256 slices, voxel dimensions 0.9x0.9x5.5 mm?).
In addition to these time series, for each patient there was also at least one
higher-resolution scan with the same modalities (52 axial 256x256 slices, voxel
dimensions 0.9x0.9x2.5 mm?®). We processed these images after registering and
resampling the T1-weighted images to the corresponding T2-weighted images
using the affine multi-modality registration algorithm based on maximization
of mutual information of Maes et al. [13]. The PD images were assumed to be
perfectly aligned with the T2 images since they were acquired simultaneously.
The images were then spatially normalized with the atlas by registering the T2-
weighted images with the T1 template associated with the atlas using the same
registration method.

3.1 Validation on Low-Resolution Images

From 10 of the patients, 2 consecutive time points were manually analyzed by
tracing MS lesions using only the T2-weighted images. We compared the delin-
eation of the automatic algorithm with these expert segmentations by comparing
the so-called total lesion load (TLL), measured as the number of voxels that were
classified as MS lesion, on these 20 scans. Figure 1 shows the TLL of the expert
segmentation along with the TLL of the automatic method. Also shown is the
linear regression: the slope is unity, and the intercept is close to zero. The correla-
tion coefficient between the automatically and manually detected lesion volumes
is high: 0.96, p < 1070, However, a paired t-test reveals a significant difference
between the TLL estimated by the expert and the TLL of the automated method
(p = 0.029).
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Fig. 1. Comparison between manual and automatic tracings of MS lesions on 20
low-resolution scans: total lesion load for each scan (a), and linear regression (b)
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Fig. 2. Visual comparison of the MS lesion labeling by two experts and by the
algorithm. Top: T1-, T2- and PD-weighted image. Bottom: MS lesions overlayed
in bright color on the PD-weighted image. Left to right: expert 1, expert 2,
automatic algorithm

3.2 Results on High-Resolution Images

In addition to the manual expert segmentations on 20 low-resolution scans, 3
high-resolution (HR) scans from different patients were analyzed by 2 different
human experts. Figure 2 shows a representative slice of the data with the lesion
segmentation of the two experts and the automatic algorithm overlayed in bright
color. The TLL of each of the experts and the TLL of the automatic algorithm
are depicted in table 1. Expert 1 consistently found a larger lesion volume than
expert 2, while the volume obtained by the automatic algorithm did not show a
systematic relationship with that segmented by the human observers .

Comparing the TLL of two raters does not take into account any spatial
correspondence of the segmented lesions [11]. We therefore calculated indices,
the definition of which is given in table 2, which take account of the degree
of correspondence between two segmentations: the similarity index which was
previously used by Zijdenbos et al. [2], the overlap index, and the global spatial
correspondence indices recently proposed by Bello and Colchester [14].

The correspondence indices between expert 1, expert 2 and the automatic
algorithm are depicted in table 3. We fused the segmentation maps of all 3
scans for each rater in order to have a single average index between each pair of
raters. The non-symmetric nature of the global spatial correspondence indices
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is apparent in table 3 where the columns have been considered as the reference
segmentation and the rows as the current observation. Thus, expert 1 has an
average overall correspondence with expert 2 of 50.9 and expert 2 has an aver-
age overall correspondence of 43.8 with expert 1. This means that, on average,
roughly half of the voxels labeled as lesion by expert 1 were also identified as
lesion by expert 2, and that the common lesion voxels have a greater correspon-
dence with the segmentations by expert 2 than with those by expert 1.

Regarding the automatic segmentation, the average similarity and overlap
indices between the automatic method and the experts are smaller than be-
tween the experts, in particular for expert 1. The global spatial correspondence
measures show the results of the automatic method to have an average over-
all correspondence of 33.4 with expert 1 and 39.8 with expert 2. At the same
time, the segmentations done by expert 1 have an average overall correspondence
of 39.9 with the automatic method, whereas those by expert 2 have an average
overall correspondence of 40.8. These values indicate that the voxels identified
as lesion by either of the experts and the automatic method in both cases had a
slightly better correspondence with the automatic segmentation than with the
manual segmentation. As expected from the definitions in table 2, the values
of S are higher than those of O and C. However, all three measures show that
the agreement between the experts is, on average, slightly better than between
the automatic method and either of the experts, and that the automatic method
has a better agreement with expert 2 than with expert 1.

Table 1. Total lesion load by two human experts and the automatic algorithm
for 3 high-resolution data sets

TLL scan 1 scan 2 scan 3
expert 1 5303 939 8172
expert 2 3772 598 6745

automatic 4609 228 8789

Table 2. Definition of spatial correspondence indices. V; and V5 denote the
total lesion volume of rater 1 and 2, and Vi denotes the volume of the voxels
that both indicated as lesion. I( X; Y) is the average total mutual information
between rater 1 ( X) and rater 2 (Y). H( X) and H( Y') denote the entropy
of rater 1 and rater 2, respectively

symbol name definition
S similarity index 2Via/ (Vi + Va)
O overlap index Vig/(Vi + Vo — Vi2)
C |global spatial correspondence|l( X; Y)/ H(Y)and I( X; Y) / H( X)
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Table 3. Spatial correspondence indices between each pair of raters on the HR
scans

| I | expert 1 | expert2 | automatic |
expert 1 100 59.2 51.5

S (%) || expert 2 59.2 100 55
automatic 51.5 55 100
expert 1 100 42 34.7

O (%)|| expert 2 42 100 38
automatic 34.7 38 100
expert 1 100 50.9 39.9

C (%)|| expert 2 43.8 100 40.8
automatic 33.4 39.8 100

4 Discussion

We validated the method by comparing the total lesion load (TLL) of automat-
ically detected lesions on 20 scans with those detected by a human expert. A
paired t-test revealed a significant difference between the TLL’s of the automatic
and the human rater. However, as pointed out in [1], the most important require-
ment for an automated method is that its measurements change in response to
a treatment in a manner proportionate to manual measurements. We therefore
performed a linear regression analysis, rather than concentrating on the abso-
lute difference in TLL between the automated method and that of the manual
segmentations. The regression analysis shows that the automatic segmentations
indeed change proportionately to the manual segmentations.

Comparing the TLL of lesions detected by two different raters does not take
into account the spatial correspondence between the two segmentations. If the
automated method is used to study time correlations of lesion groups and lesion
patterns in MS time series, it is important that the lesions are also spatially
correctly detected. For 3 patients, we therefore calculated measures which assess
this degree of correspondence between two human experts and between each of
the experts with the automatic algorithm. Although the inter-observer variability
for the experts was very large, the average overall agreement between the two
experts was still better than the agreement between any of the experts and the
automated algorithm. However, the average overall agreement between expert 2
and the automatic method was comparable to that between the experts.

The segmentation results were also analysed qualitatively. It was notable that
the different segmentation methods (expert 1, expert 2 and automatic) showed
certain differences which were consistent across patients. Expert 1 segmented
many more brainstem and cerebellar lesions. Expert 2 generally segmented a
larger number of lesions in the hemispheres. The automatic method tended to
place the lesion boundary inside that chosen by the experts. Overall, very care-
ful scrutiny of the segmentations did not reveal consistent failings in any of the
methods. MS lesion segmentation is challenging for human observers and auto-
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mated methods alike. Disagreement over boundary placement of specific lesions
contributed only a small fraction of the total error. More important was dis-
agreement over whether or not a lesion was present in a certain locality (object
identification).

In this paper, the automatic method was validated by comparison of the seg-
mentations with those of human experts. The automated algorithm uses multi-
spectral data, while the manual segmentations used for validation were only
based on T2-weighted images, which might have introduced errors in the man-
ual tracings. Although the results presented in this paper look promising, a more
thorough validation and assessment of intra- and inter-observer variability as-
sociated with manual delineation will require data of repeated manual tracings
based on multi-spectral data by several human experts, as well as a study of the
spatial correspondence between individual lesions and between group of lesions.

5 Summary and Conclusions

This paper presented a fully automated model-based method for segmenting
MS lesions from multi-channel MR images. The method simultaneously corrects
for MR field inhomogeneities, estimates tissue class distribution parameters and
classifies the image voxels. MS lesions are detected as voxels that are not well ex-
plained by the model. The results of the automated method were compared with
the lesions delineated by human experts, showing a significant total lesion load
correlation. When the degree of spatial correspondence between two segmen-
tations was taken into account, considerable disagreement was revealed, both
between the expert manual segmentations, and between expert and automatic
methods. Qualitative evaluation of the results showed that the major source of
disagreement lies in identification of lesions as opposed to boundary placement.
There is no true gold standard available for evaluating methods, and correct
identification of MS lesions remains a major challenge for human observers and
automated methods alike.
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