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Abstract. We present a new approach for the computation of the de-
formation field between three dimensional (3D) images. The deformation
field minimizes the sum of the squared differences between the images to
be matched and is constrained by the physical properties of the differ-
ent objects represented by the image. The objects are modeled as elastic
bodies. Compared to optical flow methods, this approach distinguishes
itself by three main characteristics: it can account for the actual physical
properties of the objects to be deformed, it can provide us with physical
properties of the deformed objects (i.e. stress tensors), and computes a
global solution to the deformation instead of a set of local solutions. This
latter characteristic is achieved through a finite-element based scheme.
The finite element approach requires the different objects in the im-
ages to be meshed. Therefore, a tetrahedral mesh generator using a pre-
computed case table and specifically suited for segmented images has
been developed. Preliminary experiments on simulated data as well as
on medical data have been carried out successfully. Tested medical ap-
plications included muscle exercise imaging and ventricular deformation
in multiple sclerosis.

1 Introduction

During the last decade, physically realistic models for surgical planning and
image registration have gained increased attention in the medical imaging com-
munity. The reason for this is that purely image-based statistical methods do
not take into account the physical properties of the objects depicted in the image
and often cannot predict any changes in the image.
Different imaged objects have very different properties and react in a way

defined by their material characteristics (e.g. bone and soft tissues have very
different behaviors when submitted to equivalent stresses). Therefore, we be-
lieve that using a model incorporating the object’s physical characteristics can
improve the accuracy of a deformable model significantly.
The discretization of deformation problems using the Finite Element (FE)

Method and elastic bodies is becoming more and more popular for various appli-
cations such as surgical simulation and surgical planning [1,2,3]. This method,
in conjunction with an elastic deformation model, is often chosen for its reliable
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behavior and accuracy as compared to simpler analogies such as mass-spring
models and others [4,5].
Previous work for recovering image deformation is mainly based on local im-

age structure [6,7]. These methods compute a deformation field between images
simultaneously minimizing a local similarity measure and satisfying some kind of
arbitrarily chosen smoothness constraint. They are often referred to as optical
flow (OF) methods. Later, the image registration community proposed physi-
cal deformation models to constrain the deformation field using elastic [8,9] or
even viscous fluid deformation models [10,11] . It is only recently that biome-
chanical models have been explicitly proposed to constrain the deformation of
images [12,13]. Currently, the drawback of the latter methods is that they either
require user intervention, or another means to compute the forces applied to the
model. Another drawback is that these methods have only been applied to 2D
images thereby limiting the clinical utility and the possibility to efficiently assess
the accuracy of the method.
We propose a new integrated approach that implicitly computes the forces

applied to the 3D model by constraining the deformation field to satisfy both
the elasticity model and the local image similarity criterion. This is achieved
by embedding an image similarity constraint on the deformation field into the
minimization scheme that leads to the constitutive equations of the deformation
model. The equations are discretized using the finite element method.
We apply this method to synthetic 3D images as well as to sequences of

arm exercise and enlarging ventricles in 3D brain MRI. In these applications,
the deformations happen over time and are, at least in part, intrinsically due to
small biomechanical deformations for which our elastic model is very well suited.

2 Theory

2.1 Mathematical Formulation of the Problem

We formulate the elastic matching of two images as an energy minimization
procedure, where the energy comprises a term modeling the physical behavior
of the object to be deformed and another term driving the model so as to match
both images. The matching criterion between both images is modeled as the
minimization of the sum of the squared differences between both images.
Assuming a linear elastic continuum with no initial stresses or strains, the

potential energy of an elastic body submitted to externally applied forces can
be expressed as [14]:

E =
∫

Ω

σtε dΩ +
∫

Ω

Fu dΩ (1)

where F is the vector representing the forces applied to the elastic body (forces
per unit volume, surface forces or forces concentrated at the nodes), u the dis-
placement vector, and Ω the body on which one is working. ε is the strain vector,
defined as
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and σ the stress vector, linked to the strain vector by the material’s constitutive
equations. In the case of linear elasticity, with no initial stresses or strains, this
relation is described as

σ =
(
σx, σy, σz , τxy, τyz , τxz

)t = Dε (3)

where D is the elasticity matrix characterizing the material’s properties [14].
The external forces F can be computed as a classical optical flow field between

the images to be matched , providing us with a semi-implicit method where the
optical flow field would be an initial estimate of the deformation field being
regularized by the elastic model. The estimates can then be iteratively refined
until an equilibrium is reached.
To avoid the separate computation of the forces F , the elastic deformation,

and the matching criterion, we propose to directly compute a deformation field
that readily satisfies both the elasticity constraint and a local image similarity
constraint between the images to be matched (I1 and I2). Hence, the total energy
to be minimized is expressed as:

E =
∫

Ω

σtε dΩ +
∫

Ω

(
I1(x+ u(x))− I2(x)

)2
dΩ (4)

Assuming that the deformation field is small and the variation of I1 smooth, the
first order Taylor expansion of I1(x + u(x)) can be expressed as

I1(x + u(x)) ∼= I1(x) + 〈∇I1(x), u(x)〉 (5)

Using the material’s constitutive equation (3) and (5), equation (4) becomes (the
depencies to x are omitted in further developments to clarify the equations) :

E =
∫

Ω

εtDε dΩ +
∫

Ω

(
I1 − I2

)2 − 2(I1 − I2
)∇I1u+ ut∇It

1∇I1u dΩ (6)

Within a finite element discretization framework, an elastic body can be ap-
proximated as an assemblage of discrete finite elements interconnected at nodal
points on the element boundaries. The displacements are a function of the dis-
placement at the element’s nodal points weighted by the element’s shape func-
tions Nel

i (x) (7).

u(x) =
4∑

i=1

Nel
i (x)u

el
i (x) (7)

The elements we use are tetrahedra, with linear interpolation of the displacement
field. Hence, the shape function of node i of tetrahedron el is defined as follows:

Nel
i =

1
6V el

(
ael

i + bel
i x+ cel

i y + del
i z

)
(8)

The computation of the volume of the element V el and the other constants
is detailed in [14]. For every node i of each element el, we define the matrix



3D Image Matching 205

Bel
i = LiN

el
i . The function to be minimized at every node i of each element el

can thus be expressed as :

E(uel
i ) =

∫
Ω

4∑
j=1

uel
i

t
Bel

i

t
DBel

j uel
j dΩ

+
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)∇I1N
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i uel
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Ω

4∑
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i ∇It
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j uel

j dΩ (9)

We seek the minimum of this function by solving for dE(uel
i )

duel
i

= 0. Equation (9)
then becomes :

∫
Ω

4∑
j=1

(
Bel

i

t
DBel

j +Nel
i ∇It

1∇I1N
el
j

)
uel

j dΩ =
∫

Ω

(
I1 − I2

)∇I1N
el
i dΩ (10)

This last expression can be written as a matrix system for each finite element:
(
Kel +Gel

)
uel = F el (11)

Matrices Kel, Gel and F el are defined as follows: Kel
i,j =

∫
Ω
Bel

i
t
DBel

j dΩ,
Gel

i,j =
∫

Ω
Nel

i ∇It
1∇I1N

el
j dΩ, F el

j =
∫

Ω

(
I1 − I2

)∇I1N
el
i dΩ; where every ele-

ment i, j refers to pairs of nodes of the element el (i and j range from 1 to 4).Kel
i,j

and Gel
i,j are 3 by 3 matrices, F

el
j is a 3 by 1 vector. The 12 by 12 matrices Kel

and Gel, and the vector F el are computed for each element and are then assem-
bled in a global system the solution of which will provide us with the deformation
field corresponding to the global minimum of the total energy.

2.2 Tetrahedral Mesh Generation

Within the finite element framework, objects need to be meshed, i.e. divided
into finite elements. We have chosen tetrahedral elements for their simplicity in
terms of shape functions and data structure. Most available packages do not allow
meshing of multiple objects [17],[19], and are often designed for regular objects,
which is not the case for labeled medical data. Therefore, we have developed our
own tetrahedral mesh generator, specifically suited for labeled 3D volumes.
The labeled 3D image is first divided into cubes of a given size, which are

further divided into 5 tetrahedra with an alternating pattern so as to avoid di-
agonal crossings on the shared quadrilateral faces of neighboring cubes. For each
tetrahedron, the image labels at its nodes are checked. A case table draws the
elements to be added to the mesh. If all 4 nodes have non-object labels, no tetra-
hedron is added to the mesh. If all nodes have an object label, the tetrahedron is
added to the mesh as is. If the tetrahedron lies across two objects (i.e. all nodes
do not have the same label), the subdivision of the original tetrahedron is looked
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Fig. 1. Different tetrahedral cases depicted from left to right. Case 1: all nodes
belong to structure; case 2: 3 nodes belong to structure; case 3: 2 nodes belong
to structure; case 4: 1 node belongs to structure; case 5: no nodes belong to
structure.

up in the case table. Figure 1 shows the 5 basic cases. There are actually 16
cases, but the remaining cases are symmetric to cases 2, 3 and 4. The resolution
of the mesh can easily be adapted by varying the tetrahedra’s sizes. The resulting
prisms are divided into tetrahedra using Nielson’s index connexion rule [15] so as
to avoid edge crossings on the quadrilateral faces shared by neighboring prisms.
The mesh structure is built such that for images containing multiple objects, a

a) b) c)

Fig. 2. a) and b) 3D rendering of the wireframe tetrahedral mesh of lateral
ventricles. c) coronal cut through tetrahedral mesh of head and lateral ventricles.

fully connected and consistent tetrahedral mesh is obtained with for every cell,
a given label corresponding to the object the cell belongs to. Therefore, different
biomechanical properties can easily be assigned to the different cells or objects
composing the mesh.

2.3 Material Properties

An isotropic linear elastic material is characterized by two parameters: Young’s
elasticity modulus E and Poisson’s ratio ν [14]. They determine the elastic be-
havior of the object to be deformed and are related to the Lamé constants λ
and µ by the following relations :

E =
µ(2µ+ 3λ)

µ+ λ
ν =

λ

2(λ+ µ)
(12)

where E relates tension in the object and its stretch in the longitudinal direction,
and ν is the ratio of the lateral contraction to longitudinal stretch.
The choice of these values is of course critical to the reliability of a physics

based deformation model. Their determination has not been addressed very con-
sistently in the literature as the coefficients used often differ significantly from
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study to study and do not always include the physical units of the values. Re-
cently, Hagemann et. al. [13] published a comparative study of brain elasticity
coefficients proposed by different authors, and came to the conclusion that for
their application, the only comparable and meaningful values presented by other
authors are the ratios of the coefficients. This has also been our choice for all
the presented experiments.

3 Experiments

We have implemented our own FE algorithm. The assembly and solving of the
linear matrix system has been parallelized using the PETSc library [16]. The
matching algorithm, using a mesh with approximately hundred thousand tetra-
hedra, only takes a few minutes on a parallel machine with 20 Ultra Sparc II
250Mhz CPUs. The size of the edges of the tetrahedra was approximately 5 mm,
so as to have a good compromise between capture range and local precision. The
3D visualization module has been programmed using The Visualization Toolkit
library [17].
An experiment with a synthetic image was carried out to verify the plausibil-

ity of our model and to show the advantage, for medical imaging applications, of
our matching using an elastic model instead of just considering local image struc-
ture with a smoothness constraint (Optical Flow methods). To demonstrate the
applicability of our method, we also chose two experiments with medical data.

3.1 Growing Sphere Experiment

We have applied the algorithm to a synthetic sequence of two spheres (gray
regions) centered at the same location with a radius of 15 and 17 pixels. On
figure 3, one can observe that the deformation field yielded by OF is located
only at the voxels where the difference between both images is non-zero, while
the FE elastic deformation algorithm propagates the deformation all along the
surrounding elastic body (which in this experiment was stiffer and had a larger
Young modulus than the sphere itself).

a) b) c)

Fig. 3. Growing sphere. a) and b): close-ups of 2D cuts through 3D image with
a) classical OF, and b) FE matching deformation fields overlayed, c) and 3D
orthogonal cuts through the FE mesh with intensity coding of the displacement
field. The displacement field is mainly located at the boundaries of the sphere
and is propagated through the surrounding elastic medium.
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3.2 Arm Data

The next example studies the deformation occurring when a muscle of the arm
is exercised by a two finger flexion [18]. Exercise causes a muscle on the left part
of the image to expand. The aim of this exercise related muscle deformation
experiment was to characterize the physical change happening during exercise,
by comparing both images when they are aligned together.

a) b) c)

Fig. 4. Arm exercise. Slice of 3D MR dataset a) at exercise, b) at rest, c) defor-
mation field overlayed on exercise slice

In this experiment, the Young modulus of the tissue has been set to 2 kPa
(and ν to 0.3), and was constant over the whole arm volume. Future enhance-
ments will include different coefficients for the bones and the skin. The results
of Figure 4 confirm that the muscular exercise manifests itself essentially on the
left part in the image, where the displacement field is the most important.

3.3 Ventricular Matching

In this experiment, the ventricles and the intra-cranial cavity of an MS patient
have been segmented at two different time points (approx. 3 years apart) from
3D T2 weighted MR images. During that period, significant enlargement of the
ventricles occurred. The matching of these time points allows us to observe the
change in shape of the brain and ventricles (E = 3kPa, ν = 0.4).

a) b) c)

Fig. 5. Enlarging ventricles.a) slice of difference between segmented images at
both time points (gray means no difference), b)deformation field superimposed
on same image at the first time point. c) close-up
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4 Conclusions and Perspectives

We have presented a new, physics-based deformable model for tracking physical
deformations using image matching. The model results from the minimization of
a deformation field simultaneously satisfying the constraints of an elastic body
and a local image similarity measure. The model provides us with a physically
realistic deformation field and also allows us to inspect the characteristics of the
deformed objects. This can be very useful for the inspection of stresses induced
by the deformation of certain objects on their surroundings. For example, the
model could be used to predict deformations consequent to the growth of a
tumor, to predict brain shift during neurosurgy, etc.
In the experiments we presented, the objects were considered to be homoge-

neous elastic bodies. Further improvements of the algorithm include the assign-
ment of different elasticities to the different objects represented in the image.
This will require a preliminary segmentation of the objects to be deformed so as
to be able to set appropriate elasticity coefficients to every cell of the mesh. Also,
the anisotropy of certain tissues could be included into the model by modifying
the elasticity matrix D appropriately.
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