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Abstract: The concepts of a probabilistic atlas are well known. The
dispersions of the resulting atlas’ spatial probability distributions depend not
only on the intrinsic variation of structures between subjects, but also on the
ability of the intersubject mapping method to compensate for gross spatial
variations. We demonstrate an automatic method of registering patients to an
atlas by maximization the mutual information between the atlas and the
patient’s gray scale data set. The global thin-plate spline (TPS) transformation
for mapping each subject is computed by automatically optimizing the loci of
40 control points distributed within the atlas. The use of 40 control points, i.e.
3*40=120 degrees of freedom (DOF), is a compromise between viscous flow
methods with huge DOF, and the 12 DOF affine mapping. We quantitatively
compare the results between using a full affine transformation versus the MI-
driven 40 control point thin-plate spline for the mean and standard deviation
volume data sets computed over the gray scale volumes of 7 patients.

1. Introduction

For several years many noted groups have been both building probabilistic atlases
of the human head as well as developing methods to further improve the classification
specificity of such atlases. Evans, et al, developed early automatic techniques using
affine transformations [1]. Since then the same group has developed a scale space
incremental deformation method called ANIMAL and have pursued additional
constraints [2] while applying such atlases to the detection of abnormalities such as
multiple sclerosis [3] and epilepsy [4]. Thirion, et al, have pursued the registration of
“crest lines” in the creation of atlases [5-9]. Christensen has demonstrated the ability
to build atlases using viscous fluid flow models [10, 11], and Thompson has added
additional free boundary surface constraints to the viscous flow deformation
technique [12]. Our objective was to apply the global objective criterion of
maximizing mutual information in developing an automatic method where the
degrees of freedom (DOF) were sufficiently small so as to prevent unjustified local
deformations, e.g. as in creating a tumor to match the patient’s data using a tumorless
model, but still had sufficient DOF and robustness to more accurately deform to fit a
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wider variation in patient geometries. The use of mutual information is attractive
because the atlas matching technique is independent of modality or acquisition
parameters as experienced in MRI. This middle ground approach yields a solution
that requires only the use of current generation desktop workstations for reasonable
case compute times.

In this paper we report on the quantitative and visual differences obtained by
mapping 7 patients of significantly different brain anatomy into the geometry of the
atlas using both the full affine, 12 DOF transform, and a 120 DOF thin-plate spline
transform under automatic control.

2. Methods

The atlas was obtained from http://www.bic.mni.mcgill.ca/brainweb/), the web site
of the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill
University. The atlas was constructed under the direction of Alan Evans with funding
from the International Consortium for Brain Mapping (ICBM). The ICBM atlas is
a 1 mm cubic voxel MRI head scan that has been manually segmented. We modified
our version of the atlas such that region 1 consists of cerebrospinal fluid, region 2 is
gray matter, region 3 is white matter, and region 0 fills the remainder of the volume.

All patients were imaged using a GE 1.5 T MRI using a 3D T1-weighted, gradient
recalled echo sequence with inversion recovery preparation which produces excellent
gray/white matter contrast and B1-field uniformity (no subsequent B1-field correction
was applied). For the registration method we used our “MIAMI Fuse” software
package where the acronym stands for mutual information for automatic
multimodality image fusion[13]. The subsampled ICBM atlas was chosen as the
reference target into which to map the patient data volume. The atlas was decimated
by using every third voxel in x and y, and every other voxel in z. Forty control point
locations were spatially distributed in the atlas to yield relatively uniform distances
between control points and provide local shape control near structures of large
variability such as the ventral and dorsal horns of the ventricles.

To begin the mapping of the patient into the atlas, the user begins the process by
identifying 4 control points in the patient’s data volume that are approximately
homologous to the first 4 control points in the atlas’ set of 40. The method first
optimizes a 7 degree-of-freedom (DOF) affine geometric fit (rotation, isotropic
scaling, and translation computed from 4 control points) between the patient data and
the ICBM model until the increase in mutual information between repeated
optimization cycles is less than .0001 bit. The method continues by fitting a 12 DOF
full affine model also using only 4 control points, followed a 120 DOF fit using 40
control points for a thin plate spline (TPS) warping model. At each DOF the same
stopping criterion is used before proceeding to the next DOF level. The optimal
solution at one DOF level is used as the initial starting condition for the next level by
mapping the desired number of control points from the atlas into the patient data set
using the previous, best solution. In this manner the patient MRI is first mapped onto
the ICBM model using large scale, global controls while more local controls are
applied last.

http://www.bic.mni.mcgill.ca/brainweb/)
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Fig. 1a: View of ICBM atlas with 40
control points distributed over
volume. The first 4 control points are
depicted in white.

Fig. 1b: View of typical patient data
set with 4 approximate homologous
control points placed in volume to
roughly match the positions of the
white markers in atlas

The optimizer used (to minimize the negative of mutual information) was the
Nelder-Mead Simplex method commonly referred to as amoeba [14]. While not
optimal in the number of iterations required to reach the solution vector in noiseless
function optimization problems, the simplex method behaves very much like
simulated annealing with its own computed cooling schedule, and is very robust
against being trapped by local minima in noisy cost functions. The n-vector to be
optimized consists of the coordinate positions of the control points in the patient data
set where n equals three times the number of control points. Each optimization cycle
is terminated when the requested movement of each of the control points in the
patient volume set in any of the 3 cardinal coordinate directions is less than 0.1 mm.

After registration with the atlas, all patient data sets were gray scale amplitude
normalized from the same white matter volume of interest. Next the mean and
standard deviation gray scale volumes were computed for each of the two registration
methods, full affine and 120 DOF TPS. Since these data sets were registered to a
labeled atlas, we are able to easily dissect the distributions of gray scale values of
these mappings for the specific labels, i.e. cerebrospinal fluid, gray matter, and white
matter, and the overall combination.
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3. Results

The following table reports the quantitative results for the combination of patients
for the two different mapping methods.

Metrics on MRI Gray Scale Distributions Across Patients

40 Point TPS Warping For Full Affine Mapping

Selected
Volumes

CSF Gray White Com-
bined

CSF Gray White Com-
bined

Computed Standard Deviation Volume
mean 10.95 10.15 8.47 9.73 12.13 10.67 9.4 10.52

2.5%tile 3 3 2 3 3 3 2 2

97.5%tile 30 20 20 20 32 21 23 24

Computed Coefficient of Variation Volume
mean 0.47 0.30 0.18 0.29 0.48 0.31 0.21 0.31

2.5%tile 0.15 0.05 0.02 0.02 0.16 0.06 0.02 0.02

97.5%tile 0.95 0.66 0.52 0.75 1.00 0.72 0.60 0.80

Table 1.

More local effects can be observed by viewing both the mean and standard
deviation volumes. Figures 2a and 2b show the same axial slice through the average
volumes obtained by the two methods. Although the global objective function used
for the mapping, i.e. mutual information, was computed only over the brain tissues of
the atlas, Fig. 2 shows the average including extradural tissues so the reader can view
the dural edges without clipping. Figures 3a and 3b show the same sagittal slice
through the calculated standard deviation volume. The grayscale window-level was
chosen such that white represents a standard deviation of 70 and black represents 0.

Additionally the graph in Fig. 4 depicts the improvement in the objective function,
mutual information, and the average total number of optimization iterations required
as the number of control points is varied between 4 and 40 points. The compute time
using 40 control points was on the order of 11.5 hours on a 433 MHz Digital
Equipment Corporation (DEC) single processor, Personal Alpha workstation running
DEC UNIX 4.0.
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4. Discussion

The first observation we make is that, similar to Collins [2], the global quantitative
metrics understate the marked improvement that can be visualized in the images.
Thus even though some small improvement in variance averaged over the atlas
volume can be discerned between the two methods in Table 1, the automatic TPS

Fig. 2a: Axial slice through mean of
TPS warped patients.

Fig. 2b: Axial slice through mean of
full affine mapped patients.

Fig. 3a: Sagittal slice through standard
deviation volume of TPS warped
patients.

Fig. 3b: Sagittal slice through standard
deviation volume of affine mapped
patients.

warping results in an improved clarity of structures whether midbrain, or more
peripheral. In Fig. 2a note the improved clarity of the putamen, globus pallidus, and
caudate nuclei, as well as the regions near the vermis of the cerebellum, posterior
ventricles, and lateral sulcus. In Fig. 3 the most striking difference is in the local
standard deviation associated with the registration of the corpus callosum and
ventricle; note the much thicker region of high standard deviation surrounding these
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midbrain regions as well as the edges of the thalamus and pons. Registration near the
dura of the occipital cortex is noticeably improved as well.

From the following graph we observe that there are significant, easy gains in
registration accuracy associated with small increases in degrees of freedom (DOF)
beyond 12, i.e. 4 control points. Additionally we observe that the improvement in MI
with increasing numbers of control points does not appear to be asymptotically
approaching an upper threshold at 40 control points, which suggests that we can
significantly increase, e.g. double, the number of control points and improve the
resulting fit even further. Since the increase in iterations appears to be nearly linear
with number of control points, the computational cost of using more control points
should not be onerous.

In summary we have demonstrated an implementation of a method for
automatically computing a human brain atlas using the mutual information (MI)
maximization criterion where the variable degrees of freedom are specified by the
number of control points used. The use of MI makes the registration of any MRI
acquisition sequence trivial, and the use of limited, i.e. 120, degrees of freedom helps
insure the unique mapping of similar structures across patients. The process is robust
and typically requires no user intervention or repeated computational runs due to
divergent registrations.
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