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Abstract. Abnormalities in the white matter of the brain are common
to subjects with multiple sclerosis and Alzheimer’s disease. They also
develop in normal, asymptomatic, subjects and appear more frequently
with age. Clinically, it is interesting to be able to differentiate between
different disease states and to find markers which allow early diagnosis.
Conventional spin echo (CSE) magnetic resonance imaging (MRI) is sen-
sitive to these white matter changes and has frequently been applied to
their study.

Previous approaches to investigate white matter abnormalities have of-
ten been reported to have difficulty distinguishing between normal gray
matter and abnormal white matter due to their similar appearance in
MRI. Earlier methods have also often generated binary classifications,
reporting white matter as either normal or abnormal.

We have developed a new approach which first identifies the region of
white matter using a template moderated spatially varying classification,
and then estimates the degree of white matter abnormality present at
each voxel of the white matter. This fractional segmentation allows us to
preserve the heterogeneous characteristics of white matter abnormalities
and to investigate both focal and diffuse white matter damage. We com-
pute, from the fractional segmentation, a white matter spectrum showing
the different levels of white matter damage present in each subject.

We applied this automated image segmentation method to over 996 MRI
scans of subjects affected by multiple sclerosis, 72 normal aging subjects
and 29 scans of subjects with Alzheimer’s disease. We investigated the
ability to characterize these different subject groups based upon tissue
volumes determined by spatially varying classification, and by the frac-
tional segmentation of the white matter of each patient.
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1 Introduction

Abnormal white matter of the brain is common to patients with one of sev-
eral different diseases (including multiple sclerosis (MS) and Alzheimer’s dis-
ease (AD)) and also appears in normal (asymptomatic) aging (NA) subjects.
Better characterization of the nature of these white matter changes can help to
improve our understanding of the biological processes at work. Clinically, it is
interesting to be able to differentiate between different disease states and to find
markers which allow early diagnosis. Conventional spin echo magnetic resonance
imaging is sensitive to these white matter changes. MRI studies of patients and
volunteers have indicated that the patterns of brain change associated with these
processes are different. An important goal is to be able to quantitatively study
these differences.

Many automated and semi-automated segmentation algorithms for quanti-
tatively assessing these brain changes have been developed and validated. Most
of these algorithms have aimed at determining a binary characterization of each
voxel as one of a group of possible tissue classes. This approach has been limited
by two factors. First, abnormal white matter is often isointense with normal grey
matter and previous studies have been limited by the inability to discriminate
between some abnormal white matter and normal grey matter [1,2]. Secondly,
white matter damage appears as an heterogenous region of abnormal signal in-
tensity but binarization of the segmentation treats all levels of signal intensity
abnormality equally.

Segmentation methods for the assessment of white matter damage have in
the past identified voxels in the region of white matter as either normal or
as abnormal. This binarization of the state of white matter damage is at best
a useful approximation to the actual underlying brain changes that cause the
MRI signal intensity abnormalities.

Previous approaches for fractional segmentation of MRI have used geometric
and probabilistic models. These methods have been developed in order to account
for partial volume averaging to allow improved tissue volume estimates and to
improve contrast between specific tissue types [3,4,5,6].

Often these methods attempt to assign to each voxel a fractional volume of
each tissue class modelled (usually based on the relative probability of the signal
intensity occuring for each of the classes proposed to be present in a voxel). Our
work differs from these methods in two ways. First, we use an anatomical local-
ization procedure to identify the region of white matter and grey matter, and
then look for a fractional segmentation in the region of white matter. Secondly,
empirical estimation of a probability density function for the signal intensity
distribution of abnormal white matter has the following characteristics. The
most commonly occuring abnormality dominates the probability distribution -
regions of smaller and greater signal intensity are less probable. Consequently,
a fractional segmentation based solely on the probability distribution of abnor-
mal white matter signal intensity does not treat very bright regions differently
from lower brightness regions (although they have different signal intensity char-
acteristics, they can be equally probable). The use of relative weighting of the
probability of white matter and abnormal white matter (a two class partial vol-
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ume assignment) can also be problematic because typical estimation methods
for white matter probability give very low (or zero) estimates in the region of
typically abnormal white matter. This then leads to binarization of the region
of abnormal signal intensity, which we would like to avoid.

Mitchell et al. [7] described a method for constructing a white matter - gray
matter spectrum by projecting CSE MRI signal intensity onto the first principle
component of the white matter (WM) and gray matter (GM) cluster. Intensity
normalization was based on the CSF cluster but the inability to assign meaning
to specific locations along the line of projection restricted the method to the use
of arbitrary units. This method used manually determined ROIs to investigate
the WM-GM spectrum of individual lesions. Spectrums were shown for a few
time points of a few lesions in a few patients, and highlighted the possibility of
such approaches for characterizing abnormal white matter.

We have developed a new automated image segmentation algorithm which
is more sensitive and specific for white matter damage and which allows for the
investigation of different levels of signal intensity abnormality. Our approach
uses automated white matter segmentation, and so can characterize the entire
white matter region, not just easily identifiable lesions. Our method is able to
generate a calibrated scale for the degree of white matter damage present at each
voxel in the white matter region. The goal of this new segmentation method is to
allow improved measures of white matter damage to be developed and to allow
quantification of damage suspected to be present in so-called normal-appearing
white matter.

Our approach to the assessment of fractional white matter damage can be
characterized as a geometric feature space model. Unlike earlier geometric models
which relied upon more than two tissue classes, our use of automated segmen-
tation of the white matter allows us to assess white matter damage without
regard to other tissue classes (such as CSF). This makes our overall approach
of first tissue segmentation and then fractional segmentation more robust than
previously reported approaches for white matter characterization.

In the following sections, the image segmentation algorithm is presented, and
several approaches to characterizing white matter damage are proposed. The
algorithm and different white matter characterizations were applied to 72 MRI
scans of normal aging subjects, 29 MRI scans of Alzheimer’s disease subjects
and 996 MRI scans involving 46 patients with multiple sclerosis.

2 Materials and Method

The image analysis is a two step process. First we generate a high sensitivity and
specificity segmentation of the regions of white matter and grey matter. Then
we generate a fractional segmentation of the region of white matter.

Nine hundred and ninety six MRI scans acquired during a previous study
of the evolution of multiple sclerosis [8] were re-analyzed. Seventy two subjects
participated in the study as part of a large study of normal aging [1]. There
were 22 men and 50 women. All subjects provided informed consent consistent
with the institutional IRB regulations.
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Twenty nine subjects were included in the study with dementia of the
Alzheimer type. The diagnosis of probable AD was made in concordance with
NINCDS/ADRDA criteria. All patients had a history of a gradually progressive
decline in cognition, demonstrated by difficulty in social or occupational function
and impairments in memory and at least one other area of mental ability.

The conventional spin echo magnetic resonance images used in this study
were prospectively acquired on a GE Signa 1.5T scanner. Each scan covered the
entire brain with axial slices and each slice was acquired with an in-plane voxel
size of 0.9375x0.9375 mm? and a slice thickness of 3.0 mm.

2.1 High Sensitivity and Specificity Tissue Class Segmentation

Recent review papers ([2,9]) have highlighted the importance of developing new
automated methods for segmentation in the presence of the overlapping intensity
distributions of abnormal white matter and normal tissues.

The segmentation method we use involves a sequence of operations. First
is intensity based classification with intensity correction using the EM algo-
rithm [10]. This normalizes the intensities so that different scans acquired at
different times are directly comparable. The intracranial cavity (ICC) is iden-
tified with a semi-automatic method that has previously been described and
validated [11]. The tissue classes identified inside the ICC which are segmented
are CSF, white matter, gray matter and lesion. We then match a volumetric
brain atlas to the subject with linear [12] and nonlinear registration [13], and
resolve classification errors using anatomical context. We have previously de-
scribed a general method for using anatomical context to resolve tissue class
ambiguity due to overlapping intensity distributions [14]. The atlas is used to
identify deep grey matter structures and to estimate the location of the cortical
grey matter. It is then identified with region growing. The ability to segment
cortical grey matter has previously been described and validated [15]. Our ap-
proach to the segmentation of deep gray matter structures has previously been
described and validated [16].

We identify the white matter region by removing the gray matter structures
and CSF tissue class from the ICC. The fractional segmentation described in the
next section is then used to identify the level of white matter damage at every
voxel in the white matter region.

2.2 Fractional Segmentation of the White Matter Region

The region of abnormal signal intensity associated with a focal lesion may con-
tain areas of normal tissue as well as different histopathological components,
such as edema, inflammation, gliosis, demyelination and axonal loss. Microscopic
lesions of a size below the voxel resolution of the scanner occur in the normal-
appearing white matter, and constitue an ’invisible’ lesion load which a binary
segmentation is unable to detect, because of the relatively small effect upon
signal intensity these have. The inability to account for these factors (changes
in normal-appearing white matter, different pathological factors of lesions) has
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been highlighted as a limitation of existing techniques for measurement of lesion
burden [2] and recognized as an important goal for increasing the accuracy and
efficacy of quantitative analysis of MS lesions from MRI [9]. However, it is also
recognized that if a lesion burden measure is unbiased, reproducible and related
to disease activity it can be used as a reliable indicator of disease progression,
even if the measure does not fully reflect the underlying pathology [9].

Our work described here aims to investigate the potential for characterizing
the variation in white matter signal intensity observed in conventional spin echo
images (PDW and T2W images). The model we use is based on a simple ob-
servation of the signal intensity characteristics of normal and abnormal white
matter in CSE images. Lesions appear relatively bright in both PDW scans and
T2W scans. Normal white matter appears darker than grey matter in PDW and
T2W scans. Focal white matter abnormalities are often the brightest region of
the white matter and diffuse white matter abnormalities often appear as regions
of slightly less intense white matter signal intensity increase.

We propose a projection of the signal intensity variation of white matter in
this two dimensional MR intensity space onto a line joining the signal intensity
characteristics of the darkest white matter and the most bright white matter.
We hypothesise that the darkest white matter is the “healthiest” white matter
and the brightest white matter is the “most damaged” white matter and we
use this linearization to define a mapping beween two dimensional MR, intensity
space and our measure of white matter damage (0 is most healthy, 1 is most
damaged). We can then characterize the dual channel signal intensity properties
of the white matter regions in terms of its level of “white matter damage”.

The observed voxel values are modelled as being due to a combination of the
fraction of each tissue type present in the brain over the region from which the
voxel value is measured and a white noise process. Of course, this is a simplifica-
tion. For instance, even healthy individuals have some intrinsic signal intensity
variation in the white matter which is related to the structure of the white mat-
ter rather than to disease processes (for example, regions of tight white matter
bundles, such as the corpus callosum, appear darker). Let D be the voxel value
that would be measured under ideal imaging conditions for a voxel containing
maximum disease, and let H be the value measured for healthy tissue. In the
presence of noise and imaging artifacts, the observed dual echo signal intensity
of a voxel will be O, randomly perturbed away from the ideal position. Let O
be the projection of an observed voxel O" onto the line joining D and H in the
two channel feature space. We model the signal intensity at O as being due to
fractions of diseased, fD, and healthy, (1 — f)H, tissues:

O=fD+(1—f)H, fe[0,1]

This model includes the same information as a conventional binary classification
(tissue classified as either healthy or diseased white matter) since a binary clas-
sification can be obtained from this model by thresholding at f = 0.5. Figure 1 is
an illustration of the fractional segmentation of the white matter region of one
image from a CSE MRI of the brain of one patient with multiple sclerosis.
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(a) Early Echo (b)  Late  Echo (c) Fractional Seg-
(PDw) (T2w) mentation

Fig. 1. This figure illustrates the fractional segmentation of the white matter
region from one slice of a subject with multiple sclerosis. Intensity in image (c)
is proportional to the fraction of white matter damage estimated to be present
at the voxel. Note the preservation of the lesion heterogeneity and the easy
visualization of the regions of diffuse white matter damage.

2.3 Analyzing the Distribution of White Matter Damage

Once the white matter region has been identified and the fractional segmentation
of the white matter region has been computed, we can study the distribution of
the white matter damage as estimated by the fractional white matter segmen-
tation, in order to gain a better understanding of the characteristics of white
matter change.

One method for doing this is to compute a histogram of the fractional white
matter segmentation. Normalizing this histogram generates a probability dis-
tribution function which gives the empirically determined probability that each
level of white matter damage appears in the subject. We call this the white
matter spectrum of the patient. It indicates the probability of different levels of
white matter damage.

Computing a mean distribution (mean white matter spectrum) from the
white matter fractional segmentation of a group of patients with AD gives an
indication of the typical range of white matter abnormality present in patients
with AD. Similarly, a mean white matter spectrum can be computed for normal
subjects age matched to the AD subjects. Investigation of the differences between
these distributions may indicate differences in the development of white matter
abnormalities between these two groups.
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3 Results

We first present conventional volumetric tissue measurements derived by spa-
tially varying classification of MRI of normal aging (NA) and Alzheimer’s dis-
ease (AD) subjects, and then show the white matter spectra of these and MS
patients.

Figure 2 illustrates the differences between tissue volumes measured for nor-
mal aging and AD subjects. The AD subjects have lower relative white matter
volume and higher relative lesion and CSF volumes than NA subjects and this
effect is particularly pronounced with increasing age. The relationship of nor-
mal and abnormal white matter volume to ICC volume qualitatively reproduces
that of an earlier study [!] which was carried out with a different image pro-
cessing method, and so acts as a validation of the spatially varying classification
technique used here.

Figure 3(a) shows the mean white matter spectrum computed from our
databases of normal aging scans and AD scans, and the differences between
these spectra in the region above the midpoint between healthy and diseased
white matter (f = 0.5). Figure 3(b) shows the mean white matter spectrum of
the normal aging subjects, the mean white matter spectrum derived from 996
scans of 46 MS patients, and the difference between these spectra in the region
above the midpoint between healthy and diseased white matter (f = 0.5).

For comparison with the fractional segmentation distributions, Figure 4 shows
normalized histograms of the T2w intensity of the white matter and gray matter
regions. The figure also shows the intensity distributions both before and after
intensity normalization. Intensity normalization is achieved with the EM seg-
mentation algorithm, which is a nonlinear, locally adaptive process. This figure
shows that the intensity normalization process corrects for scanner and patient
intensity variability, since the T2w distributions after intensity correction are
quite similar. Note that while intensity normalization is necessary in order to
derive the fractional segmentation and to allow comparison of intensities from
different subjects, it does not distinguish between artifactual intensity inhomo-
geneity and disease related intensity inhomogeneity, so that, for example, if the
T2w intensity of a disease process was uniformly brighter than a normal subject
this difference would not be identified after intensity normalization. Although
this does not appear to be a difficulty in practice, it is possible to consider
intensity normalization schemes that attempt to separately identify artifactual
intensity variations and intrinsic disease related intensity variations.

4 Discussion

The fractional segmentation of the white matter is a new descriptive mechanism
for characterizing white matter change. It allows the visualization and quantifi-
cation of both focal white matter lesions and diffuse white matter abnormality.
Unlike binary classification, fractional segmentation preserves the inhomogeneity
observed in the white matter. The fractional segmentation allows the construc-
tion of a white matter spectrum for each subject and for groups of subjects.



white matter volume/ICC volume

Fractional Segmentation of White Matter

white matter volume/ICC volume for NA and AD patients
0.5r o

o
0451
& °
oo d’o(féo E PR
o LN
04t RGN
o S
* & °
0.35f + ® ° %
R
%
03f + %
e
.
0.25¢ S
.
4+
02
PR
0.15

20 30 40 50 60 70 80 90
age

)

(a) Ratio of white matter volume
to intracranial cavity (ICC) vol-
ume, as a function of age, for nor-
mal aging (NA, o) and Alzheimer’s
disease (AD, +) subjects.

lesion volume/ICC volume for NA and AD patients

0035
.

o

£ 003

=l

=

2,

£0.025 R

S

3

£ 002 .

g "

£0.015 . *

5 °

2 oo vy S8

g o 2% e oy .

£0.005 80 g o P BT RRE

69

<)
S5
1)
S
w
S
IS
S
w|
S
=N
S
=
S
%
S

(b) Ratio of abnormal white mat-
ter volume to intrancranial cav-
ity volume, as a function of age,
for normal aging (NA, o) and
Alzheimer’s disease (AD, +) sub-

jects.
03
N
0.25 Es
4
4
+ +t -
0.2 : 4+ 4O
+
& ’ Toeg
o * ° o 4
0.15 ¥
o
o %@ 0863
3,
B Bob
o & o
0.1 % @ ++ O
@ o
0.05 @,
YN
0.04 o

0.03

0.5

0 o5 0.2 0.25 0.3
lesion :

white matter

(c) Scatter plot of white matter, lesion and CSF tissue vol-
ume to ICC volume ratios for AD (+4) and NA (o) subjects.

Fig. 2. Tissue volumes determined with spatially varying classification for nor-
mal aging and Alzheimer’s disease subjects. The relationship of normal and
abnormal white matter volume to ICC volume as a function of age qualitatively
reproduces that of an earlier study carried out with a different image processing
technique, and so acts as a validation of the spatially varying classification tech-
nique. It appears to be possible to distinguish many of the AD subjects from
the NA subjects on the basis of the CSF/ICC, abnormal white matter/ICC and
normal white matter/ICC ratios.
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Fig. 3. Fractional segmentation of the white matter region from normal aging,
Alzheimer’s disease volunteers and multiple sclerosis patients was carried out.
The mean white matter spectrum was calculated by averaging the normalized
fractional segmentation histogram of each subject. The difference of the mean
spectra is shown in detail for the damage level above 0.5. The nonzero differences
raise the possibility that the white matter spectrum is indicative of different
disease states.

Further analysis is necessary to determine if different diseases give rise to char-
acteristic white matter spectra.

Tissue volumes determined by template moderated spatially varying classi-
fication indicate that a loss of normal white matter and an increase in CSF and
abnormal white matter is characteristic of Alzheimer’s disease. The relationship
between age, CSF volume, and normal and abnormal white matter volume de-
termined with this method (Figure 2) qualitatively reproduces earlier results [1].
This indicates that localization of the white matter region with spatially varying
classification is a reasonable initial step prior to the computation of the fractional
segmentation of this region.

We are currently investigating methods for differentiating between normal
aging and Alzheimer’s disease, and for identifying different sub-types of multiple
sclerosis based on an analysis of the white matter spectra.
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Fig. 4. This figure illustrates white matter and gray matter T2w MRI intensity
distributions from the regions of white matter and gray matter of normal aging
and Alzheimer’s disease volunteers. This figure allows comparison of the T2w
intensity distribution both before and after intensity normalization.
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