Skip to main content

Optimising Self Adaptive Networks by Evolving Rule-Based Agents

  • Conference paper
Evolutionary Image Analysis, Signal Processing and Telecommunications (EvoWorkshops 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1596))

Included in the following conference series:

Abstract

The need for networks that adapt autonomously to dynamic environments is apparent. In this paper we describe how self adaptive networks can be optimised by means of agents residing on the nodes of the network. The knowledge of these agents is a set of active rules. A genetic algorithm dynamically prioritises these rules in the face of dynamically evolving conditions. To our knowledge, this is the first time that GAs have been used for this purpose. We demonstrate the applicability of our method by presenting several experiments and results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, J., Georgeff, M., Kemp, D.B., Kinny, D.: Active databases and agent systems — A comparison. LNCS, vol. 985, pp. 342–356. Springer, Heidelberg (1995)

    Google Scholar 

  2. Bratman, M.: Intention, plans, and practical reason. Harvard University press, Cambridge (1987)

    Google Scholar 

  3. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  4. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system manifesto: A rulebase of ADBMS features. LNCS, vol. 985, pp. 3–17. Springer, Heidelberg (1995)

    Google Scholar 

  5. Fischer, K., Muller, J.P., Pischel, M.: A pragmatic BDI architecture. In: Tambe, M., Müller, J., Wooldridge, M.J. (eds.) IJCAI-WS 1995 and ATAL 1995. LNCS, vol. 1037, pp. 203–218. Springer, Heidelberg (1996)

    Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Goldberg, D.: Genetic Algorithms. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  8. Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Martin, T., L. Ralescu, A. (eds.) IJCAI-WS 1995. LNCS, vol. 1188, pp. 32–37. Springer, Heidelberg (1997)

    Google Scholar 

  9. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for systems of BDI agents. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, pp. 56–71. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Manela, M., Campbell, J.A.: Designing good pursuit problems as testbeds for distributed AI: A novel application of genetic algorithms. In: Müller, J.P., Castelfranchi, C. (eds.) MAAMAW 1993. LNCS (LNAI), vol. 957, pp. 231–252. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First International Conference on Multi—Agent Systems, San Francisco, CA, pp. 312–319. MIT Press, Cambridge (1995)

    Google Scholar 

  12. van den Akker, J., Siebes, A.: Enriching active databases with agent technology. In: Kandzia, P., Klusch, M. (eds.) CIA 1997. LNCS (LNAI), vol. 1202, pp. 116–125. Springer, Heidelberg (1997)

    Google Scholar 

  13. Syswerda, G.: Schedule Optimisation using Genetic Algorithms. In: Davis, L. (ed.) Handbook of Genetic Algorithms, ch. 21, pp. 332–349. Van Nostrand Reinhold, Newyork (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nonas, E., Poulovassilis, A. (1999). Optimising Self Adaptive Networks by Evolving Rule-Based Agents. In: Poli, R., Voigt, HM., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C. (eds) Evolutionary Image Analysis, Signal Processing and Telecommunications. EvoWorkshops 1999. Lecture Notes in Computer Science, vol 1596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10704703_17

Download citation

  • DOI: https://doi.org/10.1007/10704703_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65837-5

  • Online ISBN: 978-3-540-48917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics