
An Interval Lattice-Based Constraint Solving

Framework for Lattices

Antonio J. Fernández1? and Patricia M. Hill2

1 Departamento de Lenguajes y Ciencias de la Computación,
E.T.S.I.I., 29071 Teatinos, Málaga, Spain

afdez@lcc.uma.es
2 School of Computer Studies, University of Leeds,

Leeds, LS2 9JT, England
hill@scs.leeds.ac.uk

Abstract. We present a simple generic framework to solve constraints
on any domain (finite or infinite) which has a lattice structure. The ap-
proach is based on the use of a single constraint similar to the indexicals
used by CLP over finite domains and on a particular definition of an
interval lattice built from the computation domain. We provide the the-
oretical foundations for this framework, a schematic procedure for the
operational semantics, and numerous examples illustrating how it can
be used both over classical and new domains. We also show how lattice
combinators can be used to generate new domains and hence new con-
straint solvers for these domains from existing domains.

Keywords: Lattice, constraint solving, constraint propagation, indexi-
cals.

1 Introduction

Constraint Logic Programming (CLP) systems support many different domains
such as finite ranges of integers, reals, finite sets of elements or the Booleans.
The type of the domain determines the nature of the constraints and the solvers
used to solve them. Existing constraint solvers (with the exception of the CHR
approach [7]), only support specified domains. In particular, the cardinality of
the domain determines the constraint solving procedure so that existing CLP
systems have distinct constraint solving methods for the finite and the infinite do-
mains. On the other hand, CHR [7] is very expressive, allowing for user-defined
domains. Unfortunately this flexibility has a cost and CHR solvers have not
been able to compete with the other solvers that employ the more traditional
approach. In this paper we explore an alternative approach for a flexible con-
straint solver that allows for user and system defined domains with interaction
between them.
? This work was partly supported by EPSRC grants GR/L19515 and GR/M05645 and

by CICYT grant TIC98-0445-C03-03.

A. Middeldorp, T. Sato (Eds.): FLOPS’99, LNCS 1722, pp. 194–208, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

An Interval Lattice-Based Constraint Solving Framework for Lattices 195

Normally, for any given domain, a solver has many constraints, each with
its own bespoke implementation. The exception to this rule is CLP(FD) [4]
which is designed for the finite domain of integers and based on a single generic
constraint often referred to as an indexical. The implementation of indexicals uses
a simple interval narrowing technique which can be smoothly integrated into the
WAM [2,6]. This approach has been shown to be adaptable and very efficient
and now integrated into mainstream CLP systems such as SICStus Prolog.

This paper has two contributions. First, we provide a theoretical framework
for the indexical approach to constraint solvers. This is formulated for any or-
dered domain that is a lattice. We have observed that most of the existing con-
straint solvers are for domains that are lattices. Thus our second contribution is
to provide a theoretical foundation for more generic constraint solvers where a
single solver can support any system or user-defined domain (even if its cardinal-
ity is infinite) provided it is a lattice. One advantage of our framework is that,
as it is based on lattice theory, it is straightforward to construct new domains
and new constraint solvers for these domains from existing ones. In this paper,
we describe different ways of performing these constructions and illustrate them
by means of examples.

The paper is structured as follows. Section 2 recalls algebraic concepts used
in the paper. In Section 3 the computation domain, the execution model and a
schema of an operational semantics are described. Section 4 shows the genericity
of the theoretical framework by providing several instances which include both
the common well-supported domains as well as new domains. Section 5 describes
with examples how the framework can be used on the combination of domains.
The paper ends with some considerations about related work and the conclusions.

2 Preliminaries

2.1 Ordered Sets

Definition 1. (Ordering) Let C be a set with equality. A binary relation � on
C is an ordering relation if it is reflexive, antisymmetric and transitive. The
relation ≺ can be defined in terms of �

c ≺ c′ ⇔ c � c′ ∧ c 6= c′,

c � c′ ⇔ c ≺ c′ ∨ c = c′.

We write c �C c′ (when necessary) to express that c � c′ where c, c′ ∈ C. Let C
be a set with ordering relation � and c, c′ ∈ C. Then we write c ∼ c′ if either
c � c′ or c′ � c and c 6∼ c′ otherwise. Any set C which has an ordering relation
is said to be ordered. Evidently any subset of an ordered set is ordered.

Definition 2. (Dual of an ordered set) Given any ordered set C we can form a
new ordered set Ĉ (called the dual of C) which contains the same elements as
C and b �Ĉ a if and only if a �C b. In general, given any statement Φ about
ordered sets, the dual statement Φ̂ may be obtained by replacing each expression
of the form x � y by y � x.

196 Antonio J. Fernández and Patricia M. Hill

Definition 3. (Bounds) Let C be an ordered set. An element s in C is a lower
(upper) bound of a subset E ⊆ C if and only if ∀x ∈ E: s � x (x � s). If the set
of lower (upper) bounds of E has a greatest (least) element, then that element is
called the greatest lower bound (least upper bound) of E and denoted by glbC(E)
(lubC(E)). For simplicity, we adopt the notation glbC(x, y) and lubC(x, y) when
E contains only two elements x and y.

Definition 4. (Predecessor and successor) Let C be an ordered set and let
c, c′ ∈ C. Then c is called a predecessor of c′ and c′ a successor of c if c � c′.
We say c is the immediate predecessor of c′ if c ≺ c′ and for any c′′ ∈ C such
that c � c′′ ≺ c′ implies c = c′′. The immediate successor of c is defined dually.

Definition 5. (Direct product) Let C1 and C2 be ordered sets. The direct prod-
uct C = 〈C1, C2〉 is an ordered set with domain the Cartesian product of C1 and
C2 and ordering defined by: 〈x1, x2〉 �C 〈y1, y2〉 ⇐⇒ x1 �C1 y1 and x2 �C2 y2

Definition 6. (Lexicographic product) Let C1 and C2 be ordered sets. The lex-
icographic product C = (C1, C2) is an ordered set with domain the Cartesian
product of C1 and C2 and ordering defined by:

(x1, x2) �C (y1, y2) ⇐⇒ x1 ≺C1 y1 or x1 = y1 and x2 �C2 y2

2.2 Lattices

Definition 7. (Lattice) Let L be an ordered set. L is a lattice if lubL(x , y) and
glbL(x , y) exist for any two elements x, y ∈ L. If lubL(S) and glbL(S) exist for
all S ⊆ L, then L is a complete lattice.

Definition 8. (Top and bottom elements) Let L be a lattice. glbL(L), if it exists,
is called the bottom element of L and written ⊥L. Similarly, lubL(L), if it exists,
is called the top element of L and written >L. The lack of a bottom or top element
can be remedied by adding a fictitious one. Thus, we define the lifted lattice of
L to be L∪ {⊥L,>L} where, if glbL(L) does not exist, ⊥L is a new element not
in L such that ∀a ∈ L,⊥L ≺ a and similarly, if lubL(L) does not exist, >L is a
new element not in L such that ∀a ∈ L, a ≺ >L.

Proposition 1. (Products of lattices) Let L1 and L2 be two (lifted) lattices.
Then the direct product 〈L1, L2〉 and the lexicographic product (L1, L2) are lat-
tices when we define:

glb(〈x1, x2〉, 〈y1, y2〉) = 〈glbL1(x1, y1), glbL2(x2, y2)〉
glb((x1, x2), (y1, y2)) = if x1 = y1 then (x1, glbL2(x2, y2))

elsif x1 ≺ y1 then (x1, x2)

elsif x1 � y1 then (y1, y2)

else (glbL1(x1, y1),>L2)

lub is defined dually to glb1.

Proofs and more information about lattices can be found in [5].
1 Note that >L2 must be also changed to its dual ⊥L2 .

An Interval Lattice-Based Constraint Solving Framework for Lattices 197

3 The Constraint Domains

3.1 The Computation Domain

The underlying domain for the constraints, denoted here by D0, is a lattice called
the computation domain. It is assumed that D0 has been lifted to include top
and bottom elements, >D0 and ⊥D0 respectively.

The domain that is actually used for the constraint solving is a set of intervals
on the computation domain and called the interval domain. We allow for the
bounds of the interval to be either open or closed and denote these bounds with
open and closed brackets, respectively. Thus, we first need to define an ordering
between the open and closed right brackets ‘)’, ‘]’ so that the domain of right
brackets is itself a lattice.

Definition 9. (Bracket domain) The bracket domain B is the lattice of two
elements ‘)’ and ‘]’ with ordering ‘)’ ≺B ‘]’. Any element of B is denoted by ‘}’.

Definition 10. (Simple bounded computation domain) The simple bounded
computation domain D is the lexicographic product (D0, B).

By Proposition 1, D is a lattice. For clarity we write a} to express (a,‘}’) in
D. For example, if D0 is the integer domain, then in D = (D0, B), 3) �D 3],
4] �D 7], glbD(3], 5]) = 3] and lubD(3], 3)) = 3]. Note that ⊥D = ⊥D0) and that
>D = >D0].

Definition 11. (Mirror of D) The mirror of D is the lexicographic product
(D̂0, B) and is denoted by D. The mirror of an element t ∈ D is denoted by
t. By Proposition 1, D is a lattice. For convenience, we write {a to express a}.

Note that if t1 = a1}1, t2 = a2}2 ∈ D where a1 6= a2 we have:
(1) t2 �D t1 ⇔ t1 �D t2;
(2) glbD(t1, t2) = lubD(t1, t2) and lubD(t1, t2) = glbD(t1, t2);
(3) ⊥D = >D0) = (>D0 , >D = ⊥D0] = [⊥D0 .

For example, if D0 = <, 3.1] = [3.1 and 6.7) = (6.7, [5.2 �D (3.1 �D [3.1 �D

[2.2, glbD([5.0, [7.2) = [7.2 and lubD([5.0, [7.2) = [5.0.

3.2 Constraint Operators

Let D = (D0, B) be the simple bounded computation domain for D0.

Definition 12. (Constraint operators) A constraint operator (for D) is a func-
tion ◦ :: D1 ×D2 → D where D1, D2 ∈ {D, D}. Given a constraint operator ◦, the
mirror operator ◦ :: D1 ×D2 → D is defined, for each t1 ∈ D1 and t2 ∈ D2, to be
t1◦t2 = t1 ◦ t2.

198 Antonio J. Fernández and Patricia M. Hill

Definition 13. (Monotonicity of operators) Suppose D1, D2 ∈ {D, D} and ◦ ::
D1×D2 → D is a constraint operator. Then, ◦ is monotonic if, for all t1, t

′
1 ∈ D1

and t2, t
′
2 ∈ D2 such that t1 �D1 t′1 and t2 �D2 t′2 we have

(t1 ◦ t2) �D (t′1 ◦ t2)

(t1 ◦ t2) �D (t1 ◦ t′2).

Lemma 1. The constraint operator ◦ is monotonic if and only if the mirror
operator ◦ is monotonic.

We impose the following restriction on the constraint operators.

Law of monotonicity for constraint operators.
• Each constraint operator must be monotonic.
Normally, a constraint operator ◦ :: D1 ×D2 → D where D1, D2 ∈ {D, D}

will be defined by the user or system on D0 and B separately. The value of ◦ on
D is then inferred from its value on D0 and B so that, if t1 = a1}1, t2 = a2}2 are
terms in D1, D2, respectively, then t1 ◦ t2 = (a1 ◦ a2)(}1◦}2). Then, if the law
of monotonicity is to hold in D, it has to hold for the definitions of ◦ on each of
D0 and B.

For example, if D0 = <, 3.0) + 4.0] = 7.0) where)+] =) and 3.0 + 4.0 = 7.0.

3.3 Indexicals

We now add indexicals to the domains D and D. To distinguish between the
simple bounded computation domain already defined and the same domain but
augmented with indexicals, we denote the simple bounded computation domain
for D0 as Ds. We assume that there is both a set OD of constraint operators
defined on Dsand a set VD0 of variables associated with the domain D0.

Definition 14. (Bounded computation domain) If Ds is a simple bounded com-
putation domain for D0, then the bounded computation domain D for D0 and
its mirror D are defined

D = Ds ∪ {max(x) | x ∈ VD0 } ∪ {t1 ◦ t2 | ◦ :: Ds
1 ×Ds

2 → Ds ∈OD , t1 ∈ D1 , t2 ∈D2},
D = Ds ∪ {min(x) | x ∈ VD0 } ∪ {t1 ◦ t2 | ◦ :: Ds

1 ×Ds
2 → Ds ∈ OD , t1 ∈ D1 , t2 ∈ D2}.

where, if t ∈ D \Ds

max(x) = min(x),

t1 ◦ t2 = t1◦t2.

The expressions max (x),min(x) are called indexicals. Elements of D \Ds and
D \Ds are called indexical terms

The bounded computation domain D is also a lattice inheriting its ordering
from Ds. Thus, if t1, t2 ∈ D, then t1 �D t2 if and only if t1, t2 ∈ Ds and
t1 �Ds t2 or t1 = t′1 ◦ t′′1 , t2 = t′2 ◦ t′′2 and t′1 �D t′2, t′′1 �D t′′2 .

An Interval Lattice-Based Constraint Solving Framework for Lattices 199

3.4 Interval Domain

Definition 15. (Interval domain) We define the interval domain RD over D0 as
the lattice resulting from the direct product 〈D, D〉. The simple interval domain
Rs

D is the lattice 〈Ds, Ds〉.
Therefore, for any r1 = 〈s1, t1〉 and r2 = 〈s2, t2〉, where s1, s2, t1, t2 ∈ D and

r1, r2 ∈ RD,

r1 �RD r2 ⇐⇒ (s1 �D s2) and (t1 �D t2),

glbRD
(r1 , r2) = 〈glbD (s1 , s2), glbD (t1 , t2)〉,

lubRD (r1 , r2) = 〈lubD (s1 , s2), lubD(t1 , t2)〉,
>RD = [⊥D0 ,>D0],

⊥RD = (>D0 ,⊥D0).

An element 〈s, t〉 in RD is inconsistent if
(1) s 6�D t (note that this means the range is inconsistent if s 6∼D t) or
(2) s = a) and t = a}.
Otherwise 〈s, t〉 in RD is consistent. Note that this means that ⊥RD is inconsis-
tent.

A range is an element of Rs
D. A range expression is an element of RD \Rs

D.

For simplicity, 〈s, t〉 will be written as s, t for both ranges and range expres-
sions. Thus an element 〈a}, b}〉 is written as {a, b}. As examples of the defini-
tions shown above and considering the real domain we have that [2.3, 8.9)
is a range, [1.4, max(x) + 4.9] is a range expression, [3.0, 4.0) �RD (1.8, 4.5],
glbRD([3.2, 6.7], (1.8, 4.5]) = [3.2, 4.5] and lubRD([3.2, 6.7], (1.8, 4.5]) = (1.8, 6.7].
It is important to note that �RD simulates the interval inclusion.

3.5 Interval Constraints

Let RD denote the interval domain over D0 and let VD0 be a set of variables
associated with the domain D0. An interval constraint for D0 assigns an element
in RD to a variable in VD0 .

Definition 16. (Interval constraint) Suppose r ∈ RD and x ∈ VD0 . Then

x v r

is called an interval constraint for D0. x is called the constrained variable. If r is
a range (resp. range expression), then x v r is called a simple (resp. non-simple)
interval constraint. The interval constraint x v >RD is called a type constraint
and denoted by x::′D0. A simple interval constraint x v r is consistent (resp.
inconsistent) if r is consistent (resp. inconsistent).

To illustrate these definitions: y, x ::′ Integer, b ::′ Bool, w, t ::′ Real, and
n ::′ Natural are examples of type constraints; y v [1, 4), b v [True, T rue],
and n v [zero, suc(suc(zero))] are examples of simple interval constraints; x v
min(y), max(y) + 3] and t v (1.21∗min(w), 4.56) are examples of non-simple
interval constraints where + and ∗ are constraint operators for the Integer and
Real domains.

200 Antonio J. Fernández and Patricia M. Hill

Definition 17. (A partial ordering on interval constraints) Suppose x ∈ VD0 .
Let Cx

D be the set of all interval constraints over D0 with constrained variable
x. Suppose c1 = x v r1, c2 = x v r2 ∈ Cx

D. Then c1 �Cx
D

c2 if and only if
r1 �RD r2. As RD is a lattice, Cx

D is also a lattice. Note that glbCx
D
(c1, c2) =

x v glbRD(r1, r2).

Definition 18. (Constraint store) A constraint store for D0 is a finite set of
interval constraints for D0. The set of all variables constrained in a store S is
denoted by XS. A constraint store S is in a stable form (or is stable) wrt a set
of variables X ⊆ XS if for each x ∈ X there is exactly one simple constraint
x v r in S. If no set of variables is specified, we say that the store S is in a
stable form if it is stable wrt XS. A store is inconsistent if it contains at least
one inconsistent interval constraint.

Definition 19. (Evaluating Indexical Terms) For each stable constraint store S
for D0, we define the (overloaded) evaluation functions

evalS :: D → Ds , evalS :: D → Ds

evalS (t) = t if t ∈ Ds ∪Ds,

evalS (max (x)) = t if x v s, t ∈ Cs,

evalS (max (x)) = >D if Cs has no constraint for x,

evalS (min(x)) = s if x v s, t ∈ Cs,

evalS (min(x)) = ⊥D if Cs has no constraint for x,

evalS (t1 ◦ t2) = evalS (t1) ◦ evalS (t2),

where Cs is the set of all simple constraints in S.

An indexical term is a generalisation of the indexical terms provided by CLP
finite domain languages [4] and allow for infinite as well as finite ranges.

Remark 1. (Monotonicity of interval constraints) Note that with our definition
of interval constraint we disallow a constraint such as2 x v [10, 20]−max(y)
by declaring the operator ‘−’ as −::D × D → D since 20]−max(y) 6∈ D. This
constraint is non-monotonic since, as the range of y decreases (so that max (y)
decreases), the term 20]−max(y) increases in D (so that the range of x increases).
Observe that a range such as [10, 20]−max(y) could not contribute to constraint
propagation.

3.6 Execution Model

The execution model is based on a particular intersection of simple interval
constraints and on two processes: the stabilisation of a constraint store and the
constraint propagation.
2 It is easier to understand this constraint when written as x v [10,−max(y) + 20].

An Interval Lattice-Based Constraint Solving Framework for Lattices 201

Intersection of simple interval constraints

Definition 20. (∩D) The intersection in the domain D of two simple interval
constraints c1 = x v r1 and c2 = x v r2 for the same constrained variable x is
defined as follows:

c1 ∩D c2 = glbCD(c1, c2)

Note that this can be expressed in terms of ranges as follows:
(x v r1) ∩D (x v r2) = x v glbRD(r1, r2)

The following properties of ∩D are direct consequences of the definition.

Proposition 2. (∩D Properties) Suppose x ∈ VD0 and c1, c2, c3 are consistent
constraints defined on the variable x where c3 = c1 ∩D c2. Then ∩D has the
following properties:

(1) Contractance: c3 �CD c1 and c3 �CD c2.
(2) Correctness: Only values which can’t be part of any feasible solution, are

removed. If c �CD c1 and c �CD c2, then c �CD c3.
(3) Commutativity: (c1 ∩D c2) = (c2 ∩D c1)
(4) Idempotence: The final constraint c3 has to be computed once: (c1 ∩D

c3) = c3 and (c3 ∩D c2) = c3.

If Cs is a set of simple constraints with the same constrained variable, then
we define

⋂
D Cs = glbCD

(C s). As a result of the contractance property (1) in
Proposition 2 we have ∩DCs � cs, for each cs ∈ Cs.

Definition 21. (Stabilised store) Let S be a constraint store and, for each x ∈
XS, Cs

x the set of simple interval constraints constraining x in S. Then, the
stabilised store S′ of S is defined as follows:

S′ = (S \
[

x∈XS

Cs
x) ∪ {∩D(Cs

x) | x ∈ XS }

Note that, by Definition 17, if Cs
x = ∅ then ∩CD(Cs

x) = x v >RD . This ensures
that the stabilised store S′ of S has exactly one simple interval constraint for
each x ∈ XS.

We write S 7→ S′ to express that S′ is the stabilised store of S.

Definition 22. (Propagation of a constraint) Let cns be a non-simple interval
constraint x v s, t and S a stable constraint store. We say that cns is propagated
(using S) to the simple interval constraint x v s1, t1 (denoted by c′) if evalS (s) =
s1 and evalS (t) = t1 . We write cns ;S c′ to express that constraint cns has been
propagated using S to c′.

Definition 23. (Store propagation) Let S be a stable store and C a set (possibly
empty) of simple interval constraints. We say that S is propagated to C and write
S ; C if C = {c | ∃cns ∈ S ∧ cns ;S c}.

202 Antonio J. Fernández and Patricia M. Hill

3.7 Operational Schema

In this section we present as a schema an outline procedure for the execution
model. Let C be a set of interval constraints to be solved and let V be the set of
all the variables constrained or indexed in C. Suppose C = Cs ∪ Cns where Cs

is the set of simple constraints in C and Cns is the set of non-simple constraints
in C.
Definition 24. (Solution) A solution for C is a constraint store R that is stable
with respect to V and containing only simple constraints where,

(1) ∀cs ∈ Cs ∃c ∈ R.c �CD cs,

(2) ∀cns ∈ Cns ∃c ∈ R.c �CD cs,where cns
;

C′
cs and C 7→ C′.

We provide here a schema for computing a solution for C. Suppose C 7→ S
and S′ = ∅. The operational schema is as follows:

(1) while S 6= S′do

(2) S ; Cs %% Constraint Propagation

(3) S′ := S;

(4) S′ ∪ Cs 7→ S; %% Store stabilisation

(5) if S is inconsistent then exit with fail endif

(6) endwhile

We do not discuss possible efficiency improvements here since the main aim
here is to provide the basic methodology, showing how the execution method of
CLP(FD) may be generalised for constraint solving on any domain with a lattice
structure. If a solution exists, the solution is the set of all the simple interval
constraints belonging to S.

Precision. New constraints, created by the propagation step (line 2), are
added to the set of constraints before the stabilisation step (line 4). Thus, with
infinite domains, the algorithm may not terminate (note that the constraints can
be indefinitely contracted in the stabilisation step). To avoid it, we introduce the
overloaded function precision/1 which is declared as precision ::Rs

D → <. This
function must satisfy the following properties:

(i) precision(r) = 0.0 if r = s, s.
(ii) precision(r2) ≤ precision(r1) if r2 �RD r1 (Monotonicity)

To allow for the lifted bounds for infinite domains, let Hr be the highest
representable real in the computation machine. Then precision must also satisfy
precision(>D,>D) = Hr. The actual definition of precision depends on the
computation domain. For Example:

– On the integer and < domains: precision({a, b}) ⇔| b−a | .
– On the <2 domain:

precision({(x1, y1), (x2, y2)}) ⇔
√

(x1 − x2)2 + (y1 − y2)2.

– On the set domain: precision({s1, s2}) ⇔ #(s2\s1).

An Interval Lattice-Based Constraint Solving Framework for Lattices 203

We overload precision/1 and define the precision of a simple interval con-
straint cs = x v r as precision(cs) = precision(r) and the precision of a store
S, which is stable wrt V , as precision(S) =

∑
x∈V,cs∈S precision(cs).

By defining a computable3 bound ε ∈ <, we can check if the precision of
ranges for the simple constraints in a constraint store S were reduced by a sig-
nificant amount in the stabilisation process. If the change is large enough then
the propagation procedure continues. Otherwise the set of simple constraints in
the store S is considered a “good enough” solution and the procedure termi-
nates. The function precision/1 and bound ε are user or system defined for each
computational domain.

To use precision/1 and ε, the operational schema needs to be extended with
an extra test by replacing line (1) as follows:

(1) while (S 6= S′) and (precision(S′)− precision(S) ≥ ε) do

As ranges in S and S′ are contracted, precision(S) and precision(S′) de-
crease by more than ε times the number of iterations of the loop while. Thus,
there is a maximum number of possible iterations, depending on ε and the initial
stabilised constraint store S.

Remark 2. (Some remarks on the precision map)
(1) A range can be contracted whereas its precision does not decrease (i.e.

in the real domain, a range r1 = [−∞, +∞] can be contracted to a range r2 =
[0, Hr] whereas precision(r1) = precision(r2)). To avoid an early termination,
an additional test to check a change on the bounds of the ranges must also be
added to the while loop condition.

(2) The bound ε allows a direct control over the accuracy of the results4.
For example, ε = 0.0 for integers, ε = 10−8 for reals and ε = 0.0 for sets. This
provides the facility to obtain an approximate solution when an accurate solution
may not be computable.

We show in the appendix that the extended operational schema has the
following two properties.

1. Termination. The procedure shown above always terminates returning a fail
or a solution.

2. Correctness. If it exists, the algorithm reaches a solution and this solution
does not depend on the order in which constraints are chosen.

3.8 Improving Constraint Solving on Discrete Domains

We introduce two rules to improve our generic framework on discrete domains
in which the immediate predecessor pre(K) and immediate successor suc(K) of
every value K in the domain can be computed. It is possible to eliminate the
‘(’,‘)’ brackets in favour of the ‘[’,‘]’ ones using the following two range rules:

{a, K) ≡ {a, pre(K)] rleft

(K, a} ≡ [suc(K),a} rright

3 That is, representable in the machine which is being used - the computation machine.
4 [9] provided a similar idea but only over reals.

204 Antonio J. Fernández and Patricia M. Hill

If⊥D and>D elements were added as fictitious bounds, we define: (1) pre(>D) ≡
>D and (2) suc(⊥D) ≡ ⊥D .

As an example, consider the Boolean domain with the ordering false < true
and the constraint x v [false, true). This constraint provides enough informa-
tion to know the value of x must be false. Thus, given suc(false) = true and
pre(true) = false and by applying rleft, the constraint x v [false, true) is trans-
formed to x v [false, false].

As this domain is finite, the constraints could have been solved using an enu-
meration strategy5 as is done in the existing finite domain constraint languages.
However, by using immediate predecessors and successors, further constraint
propagation may be generated without enumeration.

4 Instances of Our Framework

The framework can be used on many different domains. In this section, we
present some examples. In the following, (D0,�D0 , glbD0

, lubD0 ,⊥D0 ,>D0) de-
notes a lattice on D0.

4.1 Classical Domains

Most classical constraint domains are lattices: (Integer ,≤,min,max ,−∞, +∞),
(<,≤,min,max ,−∞, +∞), (Bool ,≤,∧,∨, false, true) and (Natural ,�,
min,max , zero,∞) are lattices under their usual orders and false < true. min
and max functions return, respectively, the minimum and maximum element of
any two elements in the computation domain. Here are examples of constraint
intersection in the interval domain over these domains:

(1) i v [1, 8) ∩D i v (0, 5] = i v [1, 5]

(2) r v [1.12, 5.67) ∩D r v [2.34, 5.95) = r v [2.34, 5.67)

(3) b v (false, true] ∩D b v [false, true] = b v (false, true]

(4) n v [zero, suc(suc(zero))] ∩D n v [zero, suc(zero)] = n v [zero, suc(zero)]

4.2 Reasoning about Sets

(Set D,⊆,∩,∪, ∅,>Set D) is a lattice over which it is possible to solve set
constraints. For example, consider {s ::′ Set Integer, s v [{1}, {1, 2, 3, 4}], s v
[{3}, {1, 2, 3, 5}]} for solving. By applying ∩D twice, it is solved as follows:

s v [∅,>Set Integer] ∩D s v [{1}, {1, 2, 3, 4}] = s v [{1}, {1, 2, 3, 4}]
s v [{1}, {1, 2, 3, 4}] ∩D s v [{3}, {1, 2, 3, 5}] = s v [{1, 3}, {1, 2, 3}]

5 Possible values are assigned to the constrained variables and the constraints checked
for consistency.

An Interval Lattice-Based Constraint Solving Framework for Lattices 205

4.3 User Defined Domains

Binary Strings. The domain of binary strings
∑∗ is the set of all sequences

(possibly infinite) of zeros and ones together with >P∗ . The empty sequence is
⊥P∗ . We define x �P∗ y if and only if x is a prefix (finite initial substring)
of y. Note that, in the case, x 6∼ y, glbP∗(x, y) is the largest common prefix of
x and y (i.e.glbP∗(00010, 00111) = 00, glbP∗(01, 00101) = 0) and lubP∗(x, y)
is >P∗ . Then (

∑∗
,�P∗ , glbP∗ , lubP∗ ,⊥P∗ ,>P∗) is a lattice. This means is

possible to define constraints on an interval lattice 〈D, D〉 (with D =
∑∗×B)

i.e. x, y ::′
∑∗

, x v [001+min(y),>P∗] defines the interval of all strings which
start with the substring 001. + denotes the concatenation of strings.

Non Negative Integers Ordered by Division. Consider (Nd,�Nd
) as the

set of non negative integers (plus value 0) ordered by division, that is, for all
n, m ∈ Nd, m �Nd

n iff ∃k ∈ Nd such that km = n (that is, m divides n).
This defines a partial order. Then any number) (Nd,�Nd

, gcd, lcm, 1, 0) is a
lattice where gcd denotes the greatest common divisor function and lcm the
least common multiple function. Thus our framework will solve constraints on
this domain as follows: x v [2, 24] ∩D x v [3, 36] = x v [6, 12].

Numeric Intervals We consider Interv as the domain of the numeric intervals.
We define a �Interv b if and only if a ⊆ b. Thus glbInterv and lubInterv are the
intersection and union of intervals respectively. Our framework solves constraints
for the Interv computational domain as follows:

i v [[5, 6], [2, 10)] ∩D i v [(7, 9], [4, 15]] = i v [[5, 6] ∪ (7, 9], [4, 10)]

5 Combinations of Domains

Our lattice-based framework allows for new computation domains to be con-
structed from previously defined domains.

5.1 Product of Domains

As already observed, the direct and lexicographic products of lattices are lattices.
As an example, consider N0 = N ∪ 0 the domain of naturals plus 0. Then

N0 is a lattice under the usual ordering. Note that ⊥N0 = 0 and >N0 is lifted.
(1) Let Point be the direct product domain N0 ×N0. Then, Point is a lattice.
Note that ⊥Point = (0, 0) and >Point = (>N0 ,>N0).
(2) A rectangle can be defined by two points in a plane: its lower left corner and
its upper right corner. Let 2 be the direct product domain Point×Point. Then,
2 is a lattice. Note that ⊥2 = ((0, 0), (0, 0)) and >2 = (>Point,>Point)

206 Antonio J. Fernández and Patricia M. Hill

5.2 Sum of Domains

A lattice can be also constructed as a linear sum of other lattices.

Definition 25. (Sum) Let L1, . . . , Ln be lattices. Then their linear sum L1 ⊕
. . .⊕ Ln is the lattice LS where:
(1) LS = L1 ∪ . . . ∪ Ln

(2) the ordering relation �LS is defined by:

x �LS y ⇐⇒ x, y ∈ Li and x �Li y

or x ∈ Li, y ∈ Lj and i ≺ j

(3) glbLS and lubLS are defined as follows:

glbLS (x, y) = glbLi(x, y) and lubLS (x, y) = lubLi(x, y) if x, y ∈ Li

glbLS (x, y) = x and lubLS (x, y) = y if x ∈ Li, y ∈ Lj and i ≺ j

glbLS (x, y) = y and lubLS (x, y) = x if x ∈ Li, y ∈ Lj and j ≺ i

and (4) ⊥LS = ⊥L1 and >LS = >Ln

It is routine to check that the linear sum of lattices is a lattice. As an example,
consider the lattice AtoF containing all the (uppercase) alphabetic characters
between ‘A’ and ‘F’ with the usual alphabetical ordering and 0to9 the numeric
characters from ‘0′ to ‘9′. Then the lattice of hexadecimal digits can be defined
as the lattice 0to9⊕AtoF .

6 Related Work

In addition to related work already discussed earlier in the paper, there are
two other approaches to the provision of a general framework for constraint
satisfaction. These are described in [3] and [1]. We discuss these here.

Bistarelli et al. [3] describe, for finite domains, a general framework based on
a finite semiring structure (called c-semirings). They show that c-semirings can
also be assimilated into finite complete lattices. This framework is shown to be
adequate for classical domains and for domains which use a level of preference
(i.e. cost or degree). However, unlike our proposal, they require the computa-
tional domain to be finite. Moreover, our framework does not require a level
of confidence and, although they extended the approach of c-semirings to fi-
nite complete lattices and, in particular, for distributive lattices, they did not
consider, as we have done, arbitrary lattices.

One important part of the definition of a constraint solver is the algorithm
for constraint propagation and we have provided a simple schematic algorithm
suitable for our constraint solving framework. In contrast, in [1], Apt focusses
on just the algorithms and describes a generalisation for constraint propagation
algorithms based on chaotic iterations. He shows how most of the constraint
propagation algorithms presented in the literature can be expressed as instances
of this general framework. Further work is needed to investigate the relationship
between our algorithm and this framework.

An Interval Lattice-Based Constraint Solving Framework for Lattices 207

7 Conclusions

In this paper we have defined a theoretical framework for constraint solving on
domains with a lattice structure. Using such a domain, we have shown how to
construct an interval lattice which allows the use of open, semi-open, semi-closed
and closed intervals as well as infinite intervals. Variables, constraint operators
and indexicals for each domain provide the tools for constructing interval con-
straints. We have shown that these constraints are a natural generalisation of the
indexical constraints used in [4]. A schema for the operational semantics which is
a modified form of the procedure proposed in [8] is also given and the main prop-
erties derived from it are studied. This schema is only partially specified making
the incorporation of efficiency optimisations easier. To ensure termination, an
idea from [9] for controlling accuracy in the processing of disjoint intervals over
the reals has been generalised for our interval lattices.

Since the only requirement for our framework is that the computational do-
main must be a lattice, new domains can be obtained from previously defined
domains using standard combinators (such as direct product and sum). We have
provided examples to highlight the potential here.

To demonstrate the feasibility of our approach we have implemented a pro-
totype (built using CHRs [7]). This is still being improved and extended but the
latest version may be obtained from http ://www.lcc.uma.es/∼afdez/generic.

References

1. Apt K.R., From Chaotic Iteration to Constraint Propagation. In Proc. of the 24th
International Colloquium on Automata, Languages and Programming (ICALP’97)
(invited lecture), LNCS 1256, pp:36-55, 1997. 206, 206

2. Ait-kaci H., Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT
Press, Cambridge, Massachusetts, London, England,1991 195

3. Bistarelli S., Montanari U. and Rossi F., Semiring-Based Constraint Satisfaction
and Optimization. In Journal of the ACM, 44(2), pp:201-236, 1997. 206, 206

4. Codognet P. and Diaz D., Compiling Constraints in clp(FD). In The Journal of
Logic Programming, 27, pp:185-226, 1996. 195, 200, 207

5. Davey B.A. and Priestley H.A., Introduction to Lattices and Order. Cambridge
University Press, England, 1990. 196

6. Diaz D. and Codognet P., A minimal extension of the WAM for clp(FD). In Proc.
of the 10th International Conference on Logic Programming (ICLP’93), pp:774-
790,1993. 195

7. Frühwirth T., Theory and practice of constraint handling rules. In The Journal of
Logic Programming, 37, pp:95-138, 1998. 194, 194, 207

8. Fernández A.J. and Hill P.M., A Design for a Generic Constraint Solver for Or-
dered Domains. In Proc. of TCLP’98:Types for Constraint Logic Programming, a
JICSLP’98 Post Conference Workshop, Manchester, 1998. 207

9. Sidebottom G. and Havens, W.S., Hierarchical Arc Consistency for Disjoint Real
Intervals in Constraint logic programming. In Computational Intelligence 8(4),
1992. 203, 207

208 Antonio J. Fernández and Patricia M. Hill

Proofs of Properties of the Operational Schema

(1) Termination. Let Si and S′i denote the constraint stores S and S′, respec-
tively, at the start of the of the i + 1 iteration of the while loop. Then, S0 is
obtained by the initial stabilisation step for C and, for i ≥ 1, Si is obtained by
the stabilisation step (4) in the i − 1’st iteration. Also, S′0 = ∅ and, for i ≥ 1,
S′i = Si−1, by step (3). Since both Si and S′i are stable wrt V , for each vari-
able x ∈ V , there are unique simple constraints cs

x ∈ Si and c
′s
x ∈ S′i. By the

contractance property (1) of Theorem 2, cs
x � c

′s
x , for each x ∈ V . Thus, at the

start of the i+1’st iterations of the while loop, because of the monotonicity con-
dition (ii) for the precision/1 function, precision(Si−1) ≥ precision(Si). Thus
using the extended version of step (1) that allows for a precision test, if there is
an i + 1 iteration, precision(Si−1) ≥ precision(Si) + ε. Thus, precision(S0) ≥
precision(Si) + i × ε. However, for some k ≥ 0, precision(S0) < k × ε, so that
the procedure must terminate after no more than k iterations of the while loop.

(2) Correctness. Suppose the procedure terminates after k iterations. (If there
are no iterations, then C = ∅ and the result is trivial.) We denote by Ss

i the set
of all simple constraints in Si, 0 ≤ i ≤ k. Suppose Ss

i is propagated to Cs
i so

that Cs
i is the set of simple constraints obtained in step (2) of the i’th iteration

of the procedure. We need to show that if the procedure does not fail, then Ss
k

is a solution for C. We show, by induction on i that Ss
i is stable wrt V and

(A) for j ≤ i and each cs
j ∈ Ss

j , there exists cs
i ∈ Ss

i with the same constrained
variable and cs

i �RD cs
j .

When i = 0, then C 7→ S0 and, trivially cs
0 �RD cs

0. Suppose next that i > 0.
Then Si−1 ∪ Cs

i−1 7→ Ss
i so that Ss

i is stable wrt V . Moreover, by Definition 21
for each cs

i−1 ∈ Ss
i−1 there exists cs

i ∈ Ss
i with the same constrained variable and

cs
i �RD cs

i−1. However, by the induction hypothesis, if j ≤ i − 1 and cs
j ∈ Cs

j

there is cs
i−1 ∈ Ss

i−1 with the same constrained variable and cs
i−1 �RD cs

j . Hence,
for each j ≤ i and each cs

j ∈ Cs
j , there exists cs

i ∈ Ss
i with the same constrained

variable and cs
i �RD cs

j . Letting j = 0 in (A), and using the fact that in the
initialisation of the algorithm C 7→ S0, we obtain condition (1) in Definition 24.

We next prove that condition (2) in Definition 24 holds:
(B) for each cns ∈ Cns there is cs

k ∈ Ss
k with the same constrained variable and

cs
k �RD cs, where cns ;S0 cs.

In the initialisation step for the algorithm, we have C 7→ S0. Then, in step
(2), S0 ; Cs

1 . Thus, by Definition 22, for each cns ∈ Cns (and hence also in S0),
there exists cs

1 ∈ Cs
1 and cns ;S0 cs

1. Now, by step (4), S0 ∪ Cs
1 7→ S1 so that,

by Definition 23, for each cs
1 ∈ Cs

1 there is cs ∈ Ss
1 with the same constrained

variable and cs
1 �RD cs. By (A) we have, for each cs

1 ∈ Ss
1 there is cs

k ∈ Ss
k with

the same constrained variable and cs
k �RD cs

1. Hence (B) holds.
By commutativity property of ∩D (see Subsection 3.6), for each 0 ≤ i ≤ k,

Si is independent of the order in which the constraints in Si−1∪Ci−1 7→ Si were
intersected. Thus the solution Ss

k does not depend on the order in which the
constraints were chosen.

	Introduction
	Preliminaries
	Ordered Sets
	Lattices

	The Constraint Domains
	The Computation Domain
	Constraint Operators
	Indexicals
	Interval Domain
	Interval Constraints
	Execution Model
	Operational Schema
	Improving Constraint Solving on Discrete Domains

	Instances of Our Framework
	Classical Domains
	Reasoning about Sets
	User Defined Domains

	Combinations of Domains
	Product of Domains
	Sum of Domains

	Related Work
	Conclusions
	Proofs of Properties of the Operational Schema

