Skip to main content

Robot Localization Using Polygon Distances

  • Conference paper
Sensor Based Intelligent Robots

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1724))

Abstract

We present an approach to the localization problem, for which polygon distances play an important role. In our setting of this problem the robot is only equipped with a map of its environment, a range sensor, and possibly a compass.

To solve this problem, we first study an idealized version of it, where all data is exact and where the robot has a compass. This leads to the pure geometrical problem of fitting a visibility polygon into the map. This problem was solved very efficiently by Guibas, Motwani, and Raghavan. Unfortunately, their method is not applicable for realistic cases, where all the data is noisy.

To overcome the problems we introduce a distance function, the polar coordinate metric, that models the resemblance between a range scan and the structures of the original method. We show some important properties of the polar coordinate metric and how we can compute it efficiently. Finally, we show how this metric is used in our approach and in our experimental Robot Localization Program RoLoPro.

This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under project numbers No 88/14-1 and No 88/14-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Behrends, B., Blömer, J.: Approximate Matching of Polygonal Shapes. Annals of Mathematics and Artificial Intelligence 13, 251–265 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An Efficiently Computable Metric for Comparing Polygonal Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 209–216 (1991)

    Article  Google Scholar 

  3. Cox, I.J.: Blanche — An Experiment in Guidance and Navigation of an Autonomous Robot Vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204 (1991)

    Article  Google Scholar 

  4. Dudek, G., Romanik, K., Whitesides, S.: Localizing a Robot with Minimum Travel. SIAM Journal on Computing 27(2), 583–604 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Guibas, L.J., Motwani, R., Raghavan, P.: The Robot Localization Problem. In: Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) Algorithmic Foundations of Robotics, pp. 269–282. A K Peters (1995), http://theory.stanford.edu/people/motwani/postscripts/localiz.ps.Z

  6. Karch, O.: A Sharper Complexity Bound for the Robot Localization Problem. Technical Report No. 139, Department of Computer Science I, University of Würzburg (June 1996), http://www-info1.informatik.uniwuerzburg.de/publications/karch/tr139.ps.gz

  7. Karch, O., Wahl, Th.: Relocalization — Theory and Practice. Discrete Applied Mathematics (Special Issue on Computational Geometry) (to appear) (1999)

    Google Scholar 

  8. Mehlhorn, K., Näher, S.: LEDA – A Platform for Combinatorial and Geometric Computing. Communications of the ACM 38, 96–102 (1995), http://www.mpisb.mpg.de/guide/staff/uhrig/ledapub/reports/leda.ps.Z

  9. Noltemeier, H., Verbarg, K., Zirkelbach, C.: A Data Structure for Representing and Efficient Querying Large Scenes of Geometric Objects: MB ∗–Trees. In: Farin, G., Hagen, H., Noltemeier, H. (eds.) Geometric Modelling. Computing Supplement, vol. 8, pp. 211–226. Springer, Heidelberg (1993)

    Google Scholar 

  10. Schuierer, S.: Efficient Robot Self-Localization in Simple Polygons. In: Bolles, R.C., Bunke, H., Noltemeier, H. (eds.) Intelligent Robots – Sensing, Modelling, and Planning, pp. 129–146. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  11. T., Wahl.: Distance Functions for Polygons and their Application to Robot Localization (in German). Master’s thesis, University of Würzburg (June 1997)

    Google Scholar 

  12. Wang, C.M.: Location estimation and uncertainty analysis for mobile robots. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles. Springer, Heidelberg (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karch, O., Noltemeier, H., Wahl, T. (1999). Robot Localization Using Polygon Distances. In: Christensen, H.I., Bunke, H., Noltemeier, H. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science(), vol 1724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10705474_11

Download citation

  • DOI: https://doi.org/10.1007/10705474_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66933-3

  • Online ISBN: 978-3-540-46619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics