Skip to main content

Communication Complexity and Fourier Coefficients of the Diffie–Hellman Key

  • Conference paper
  • First Online:
LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

Abstract

Let p be a prime and let g be a primitive root of the field \(\mathbb{F}_p\) of p elements. In the paper we show that the communication complexity of the last bit of the Diffie-Hellman key g xy, is at least n/24 + o(n) where x and y are n-bit integers where n is defined by the inequalities 2n ≤ p ≤ 2n + 1 − 1. We also obtain a nontrivial upper bound on the Fourier coefficients of the last bit of g xy. The results are based on some new bounds of exponential sums with g xy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Saks, M., Shparlinski, I.E.: A lower bound for primality. In: Proc. 14 IEEE Conf. on Comp. Compl., Atlanta, pp. 10–14. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  2. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace and time–space trade-offs. J. Comp. and Syst. Sci. 45, 204–232 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bernasconi, A.: On the complexity of balanced Boolean functions. Inform. Proc. Letters 70, 157–163 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bernasconi, A.: Combinatorial properties of classes of functions hard to compute in constant depth. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 339–348. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Bernasconi, A., Damm, C., Shparlinski, I. E.: Circuit and decision tree complexity of some number theoretic problems. Tech. Report 98-21 , Dept. of Math. and Comp. Sci., pp. 1–17. Univ. of Trier (1998)

    Google Scholar 

  6. Bernasconi, A., Damm, C., Shparlinski, I.E.: On the average sensitivity of testing square-free numbers. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 291–299. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Bernasconi, A., Shparlinski, I.E.: Circuit complexity of testing square-free numbers. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 47–56. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inform. Proc. Letters 63, 257–261 (1997)

    Article  MathSciNet  Google Scholar 

  9. Canetti, R., Friedlander, J.B., Konyagin, S., Larsen, M., Lieman, D., Shparlinski, I. E.: On the statistical properties of Diffie–Hellman distributions. Israel J. Math. (to appear)

    Google Scholar 

  10. Canetti, R., Friedlander, J.B., Shparlinski, I.E.: On certain exponential sums and the distribution of Diffe–Hellman triples. J. London Math. Soc. (to appear)

    Google Scholar 

  11. Cohen, H.: A course in computational algebraic number theory. Springer, Heidelberg (1997)

    Google Scholar 

  12. Friedlander, J., Iwaniec, H.: Estimates for character sums. Proc. Amer. Math. Soc. 119, 363–372 (1993)

    Article  MathSciNet  Google Scholar 

  13. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  14. von zur Gathen, J., Shparlinski, I.E.: The CREW PRAM complexity of modular inversion. SIAM J. Computing (to appear)

    Google Scholar 

  15. Goldmann, M.: Communication complexity and lower bounds for simulating threshold circuits. In: Theoretical Advances in Neural Computing and Learning, pp. 85–125. Kluwer Acad. Publ., Dordrecht (1994)

    Chapter  Google Scholar 

  16. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27, 129–146 (1998)

    Article  MathSciNet  Google Scholar 

  17. Iwaniec, H., Sárközy, A.: On a multiplicative hybrid problem. J. Number Theory 26, 89–95 (1987)

    Article  MathSciNet  Google Scholar 

  18. Konyagin, S., Shparlinski, I.E.: Character sums with exponential functions and their applications. Cambridge Univ. Press, Cambridge (1999)

    Book  Google Scholar 

  19. Korobov, N.M.: On the distribution of digits in periodic fractions. Matem. Sbornik 89, 654–670 (1972) (in Russian)

    MathSciNet  MATH  Google Scholar 

  20. Korobov, N.M.: Exponential sums and their applications. Kluwer Acad. Publ., Dordrecht (1992)

    Book  Google Scholar 

  21. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  22. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnability. Journal of the ACM 40, 607–620 (1993)

    Article  MathSciNet  Google Scholar 

  23. Mansour, Y.: Learning Boolean functions via the Fourier transform. In: Theoretical Advances in Neural Computing and Learning, pp. 391–424. Kluwer Acad. Publ., Dordrecht (1994)

    Chapter  Google Scholar 

  24. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc. 84, 957–1041 (1978)

    Article  MathSciNet  Google Scholar 

  25. Niederreiter, H.: Random number generation and Quasi–Monte Carlo methods. SIAM Press, Philadelphia (1992)

    Book  Google Scholar 

  26. Prachar, K.: Primzahlverteilung. Springer, Berlin (1957)

    MATH  Google Scholar 

  27. Roychowdhry, V., Siu, K.-Y., Orlitsky, A.: Neural models and spectral methods. In: Theoretical Advances in Neural Computing and Learning, pp. 3–36. Kluwer Acad. Publ., Dordrecht (1994)

    Chapter  Google Scholar 

  28. Sárközy, A.: On the distribution of residues of products of integers. Acta Math. Hungar. 49, 397–401 (1987)

    Article  MathSciNet  Google Scholar 

  29. Shparlinski, I.E.: On the distribution of primitive and irreducible polynomials modulo a prime. Diskretnaja Matem. 1(1), 117–124 (1989) (in Russian)

    MathSciNet  Google Scholar 

  30. Shparlinski, I.E.: Number theoretic methods in cryptography: Complexity lower bounds. Birkhäuser, Basel (1999)

    Book  Google Scholar 

  31. Vinogradov, I.M.: Elements of number theory. Dover Publ., NY (1954)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shparlinski, I.E. (2000). Communication Complexity and Fourier Coefficients of the Diffie–Hellman Key. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_27

Download citation

  • DOI: https://doi.org/10.1007/10719839_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics