Abstract
In this paper, we consider the open problem of the complexity of the LLL algorithm in the case when the approximation parameter of the algorithm has its extreme value 1. This case is of interest because the output is then the strongest Lovász-reduced basis. Experiments reported by Lagarias and Odlyzko [13] seem to show that the algorithm remain polynomial in average. However no bound better than a naive exponential order one is established for the worst-case complexity of the optimal LLL algorithm, even for fixed small dimension (higher than 2). Here we prove that, for any fixed dimensionn, the number of iterations of the LLL algorithm is linear with respect to the size of the input. It is easy to deduce from [17] that the linear order is optimal. Moreover in 3 dimensions, we give a tight bound for the maximum number of iterations and we characterize precisely the output basis. Our bound also improves the known one for the usual (non-optimal) LLL algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M.: The shortest vector problem in L 2 is NP-hard for randomized reduction. ECCCTR97-047 (1997), http://www.eccc.uni-trier.de/eccc/
Akhavi, A.: The worst case complexity of the optimal LLL algorithm, Caen (1999) (preprint), http://www.info.unicaen.fr/~akhavi/publi.html
Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Bachem, A., Kannan, R.: Lattices and the basis reduction algorithm. CMU-CS, pp. 84–112 (1984)
Cai, J.: Some recent progress on the complexity of lattice problems. ECCC-TR99-006 (1999), http://www.eccc.uni-trier.de/eccc/
H. Daudé, Ph. Flajolet, B. Vallée. An average-case analysis of the Gaussian algorithm for lattice reduction. Comb., Prob. & Comp., 123:397–433, 1997.
Kannan, R.: Improved algorithm for integer programming and related lattice problems. In: 15th Ann. ACM Symp. on Theory of Computing, pp. 193–206 (1983)
Kannan, R.: Algorithmic geometry of numbers. Ann. Rev. Comp. Sci. 2, 231–267 (1987)
Kaib, M., Schnorr, C.P.: The generalized Gauss reduction algorithm. J. of Algorithms 21, 565–578 (1996)
Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Algorithms 1, 142–186 (1980)
Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)
Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. In: 24th IEEE Symposium FOCS, pp. 1–10 (1983)
Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithm. Theoretical Computer Science 53, 201–224 (1987)
Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst. J. of Cryptology 11, 161–185 (1998)
Vallée, B.: Un problème central en géométrie algorithmique des nombres: la réduction des réseaux. Inf. Th. et App. 3, 345–376 (1989)
Vallée, B.: Gauss’ algorithm revisited. J. of Algorithms 12, 556–572 (1991)
van Emde Boas, P.: Another NP-complete problem and the complexity of finding short vectors in a lattice. Rep. 81-04 Math. Inst. Amsterdam (1981)
von Sprang, O.: Basisreduktionsalgorithmen für Gitter kleiner Dimension. PhD thesis, Universität des Saarlandes (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akhavi, A. (2000). Worst-Case Complexity of the Optimal LLL Algorithm. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_35
Download citation
DOI: https://doi.org/10.1007/10719839_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67306-4
Online ISBN: 978-3-540-46415-0
eBook Packages: Springer Book Archive