Skip to main content

Worst-Case Complexity of the Optimal LLL Algorithm

  • Conference paper
  • First Online:
Book cover LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

Abstract

In this paper, we consider the open problem of the complexity of the LLL algorithm in the case when the approximation parameter of the algorithm has its extreme value 1. This case is of interest because the output is then the strongest Lovász-reduced basis. Experiments reported by Lagarias and Odlyzko [13] seem to show that the algorithm remain polynomial in average. However no bound better than a naive exponential order one is established for the worst-case complexity of the optimal LLL algorithm, even for fixed small dimension (higher than 2). Here we prove that, for any fixed dimensionn, the number of iterations of the LLL algorithm is linear with respect to the size of the input. It is easy to deduce from [17] that the linear order is optimal. Moreover in 3 dimensions, we give a tight bound for the maximum number of iterations and we characterize precisely the output basis. Our bound also improves the known one for the usual (non-optimal) LLL algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: The shortest vector problem in L 2 is NP-hard for randomized reduction. ECCCTR97-047 (1997), http://www.eccc.uni-trier.de/eccc/

  2. Akhavi, A.: The worst case complexity of the optimal LLL algorithm, Caen (1999) (preprint), http://www.info.unicaen.fr/~akhavi/publi.html

  3. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MathSciNet  Google Scholar 

  4. Bachem, A., Kannan, R.: Lattices and the basis reduction algorithm. CMU-CS, pp. 84–112 (1984)

    Google Scholar 

  5. Cai, J.: Some recent progress on the complexity of lattice problems. ECCC-TR99-006 (1999), http://www.eccc.uni-trier.de/eccc/

  6. H. Daudé, Ph. Flajolet, B. Vallée. An average-case analysis of the Gaussian algorithm for lattice reduction. Comb., Prob. & Comp., 123:397–433, 1997.

    Article  MathSciNet  Google Scholar 

  7. Kannan, R.: Improved algorithm for integer programming and related lattice problems. In: 15th Ann. ACM Symp. on Theory of Computing, pp. 193–206 (1983)

    Google Scholar 

  8. Kannan, R.: Algorithmic geometry of numbers. Ann. Rev. Comp. Sci. 2, 231–267 (1987)

    Article  MathSciNet  Google Scholar 

  9. Kaib, M., Schnorr, C.P.: The generalized Gauss reduction algorithm. J. of Algorithms 21, 565–578 (1996)

    Article  MathSciNet  Google Scholar 

  10. Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Algorithms 1, 142–186 (1980)

    Article  MathSciNet  Google Scholar 

  11. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  12. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)

    Article  MathSciNet  Google Scholar 

  13. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. In: 24th IEEE Symposium FOCS, pp. 1–10 (1983)

    Google Scholar 

  14. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithm. Theoretical Computer Science 53, 201–224 (1987)

    Article  MathSciNet  Google Scholar 

  15. Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst. J. of Cryptology 11, 161–185 (1998)

    Article  MathSciNet  Google Scholar 

  16. Vallée, B.: Un problème central en géométrie algorithmique des nombres: la réduction des réseaux. Inf. Th. et App. 3, 345–376 (1989)

    Article  MathSciNet  Google Scholar 

  17. Vallée, B.: Gauss’ algorithm revisited. J. of Algorithms 12, 556–572 (1991)

    Article  MathSciNet  Google Scholar 

  18. van Emde Boas, P.: Another NP-complete problem and the complexity of finding short vectors in a lattice. Rep. 81-04 Math. Inst. Amsterdam (1981)

    Google Scholar 

  19. von Sprang, O.: Basisreduktionsalgorithmen für Gitter kleiner Dimension. PhD thesis, Universität des Saarlandes (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akhavi, A. (2000). Worst-Case Complexity of the Optimal LLL Algorithm. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_35

Download citation

  • DOI: https://doi.org/10.1007/10719839_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics