Skip to main content

Combinatorics of Geometrically Distributed Random Variables: Length of Ascending Runs

  • Conference paper
  • First Online:
LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

Abstract

For n independently distributed geometric random variables we consider the average length of the m-th run, for fixed m and n → ∞. One particular result is that this parameter approaches 1 + q.

In the limiting case q → 1 we thus rederive known results about runs in permutations.

This research was partially conducted while the author was a guest of the projet Algo at INRIA, Rocquencourt. The funding came from the Austrian-French “Amadée” cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigner, M.: Combinatorial Theory. Springer, Heidelberg (1997); Reprint of the 1979 edn.

    Book  Google Scholar 

  2. Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and its Applications, vol. 2. Addison-Wesley, Reading (1976)

    MATH  Google Scholar 

  3. Comtet, L.: Advanced Combinatorics. Reidel, Dordrecht (1974)

    Book  Google Scholar 

  4. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors, caching algorithms, and self-organizing search. Discrete Applied Mathematics 39, 207–229 (1992)

    Article  MathSciNet  Google Scholar 

  5. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3, 216–240 (1990)

    Article  MathSciNet  Google Scholar 

  6. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison-Wesley, Reading (1973)

    MATH  Google Scholar 

  7. Prodinger, H.: Combinatorial problems of geometrically distributed random variables and applications in computer science. In: Strehl, V., König, R. (eds.) Publications de l’IRMA (Stra\({\ss}\)bourg), vol. 30, pp. 87–95 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prodinger, H. (2000). Combinatorics of Geometrically Distributed Random Variables: Length of Ascending Runs. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_47

Download citation

  • DOI: https://doi.org/10.1007/10719839_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics