Skip to main content

Non-linear Complexity of the Naor–Reingold Pseudo-random Function

  • Conference paper
Information Security and Cryptology - ICISC’99 (ICISC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1787))

Included in the following conference series:

Abstract

We obtain an exponential lower bound on the non-linear complexity of the new pseudo-random function, introduced recently by M. Naor and O. Reingold. This bound is an extension of the lower bound on the linear complexity of this function that has been obtained by F. Griffin and I. E. Shparlinski.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  2. Griffin, F., Shparlinski, I.E.: On the linear complexity of the Naor-Reingold pseudo-random function. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 301–308. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  4. Naor, M., Reingold, O.: Number-theoretic constructions of effcient pseudo- random functions. In: Proc. 38th IEEE Symp. on Foundations of Comp. Sci (FOCS 1997), Miami Beach, pp. 458–467. IEEE, Los Alamitos (1997)

    Google Scholar 

  5. Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Proc. Intern. Conf. on Sequences and their Applications (SETA 1998), Singapore, pp. 67–78. Springer, London (1999)

    Google Scholar 

  6. Niederreiter, H., Vielhaber, M.: Linear complexity profiles: Hausdorff dimen- sion for almost perfect profiles and measures for general profiles. J. Compl. 13, 353–383 (1996)

    Article  MathSciNet  Google Scholar 

  7. Rueppel, R.A.: Stream ciphers. In: Contemporary Cryptology: The Science of In- formation Integrity, pp. 65–134. IEEE Press, NY (1992)

    Google Scholar 

  8. Shparlinski, I.E.: On the uniformity of distribution of the Naor–Reingold pseudo-random function. Finite Fields and Their Appl (to appear)

    Google Scholar 

  9. Shparlinski, I.E.: On the Naor–Reingold pseudo-random function from elliptic curves, pp. 1–9 (1999) (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banks, W.D., Griffin, F., Lieman, D., Shparlinski, I.E. (2000). Non-linear Complexity of the Naor–Reingold Pseudo-random Function. In: Song, J. (eds) Information Security and Cryptology - ICISC’99. ICISC 1999. Lecture Notes in Computer Science, vol 1787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719994_5

Download citation

  • DOI: https://doi.org/10.1007/10719994_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67380-4

  • Online ISBN: 978-3-540-45568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics