Abstract
We obtain an exponential lower bound on the non-linear complexity of the new pseudo-random function, introduced recently by M. Naor and O. Reingold. This bound is an extension of the lower bound on the linear complexity of this function that has been obtained by F. Griffin and I. E. Shparlinski.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)
Griffin, F., Shparlinski, I.E.: On the linear complexity of the Naor-Reingold pseudo-random function. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 301–308. Springer, Heidelberg (1999)
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Cryptography. CRC Press, Boca Raton (1996)
Naor, M., Reingold, O.: Number-theoretic constructions of effcient pseudo- random functions. In: Proc. 38th IEEE Symp. on Foundations of Comp. Sci (FOCS 1997), Miami Beach, pp. 458–467. IEEE, Los Alamitos (1997)
Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Proc. Intern. Conf. on Sequences and their Applications (SETA 1998), Singapore, pp. 67–78. Springer, London (1999)
Niederreiter, H., Vielhaber, M.: Linear complexity profiles: Hausdorff dimen- sion for almost perfect profiles and measures for general profiles. J. Compl. 13, 353–383 (1996)
Rueppel, R.A.: Stream ciphers. In: Contemporary Cryptology: The Science of In- formation Integrity, pp. 65–134. IEEE Press, NY (1992)
Shparlinski, I.E.: On the uniformity of distribution of the Naor–Reingold pseudo-random function. Finite Fields and Their Appl (to appear)
Shparlinski, I.E.: On the Naor–Reingold pseudo-random function from elliptic curves, pp. 1–9 (1999) (preprint)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Banks, W.D., Griffin, F., Lieman, D., Shparlinski, I.E. (2000). Non-linear Complexity of the Naor–Reingold Pseudo-random Function. In: Song, J. (eds) Information Security and Cryptology - ICISC’99. ICISC 1999. Lecture Notes in Computer Science, vol 1787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719994_5
Download citation
DOI: https://doi.org/10.1007/10719994_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67380-4
Online ISBN: 978-3-540-45568-4
eBook Packages: Springer Book Archive