Skip to main content

Multi-agent Adaptive Dynamic Programming

  • Conference paper
MICAI 2000: Advances in Artificial Intelligence (MICAI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1793))

Included in the following conference series:

Abstract

Dynamic programming offers an exact, general solution method for completely known sequential decision problems, formulated as Markov Decision Processes (MDP), with a finite number of states. Recently, there has been a great amount of interest in the adaptive version of the problem, where the task to be solved is not completely known a priori. In such a case, an agent has to acquire the necessary knowledge through learning, while simultaneously solving the optimal control or decision problem. A large variety of algorithms, variously known as Adaptive Dynamic Programming (ADP) or Reinforcement Learning (RL), has been proposed in the literature. However, almost invariably such algorithms suffer from slow convergence in terms of the number of experiments needed. In this paper we investigate how the learning speed can be considerably improved by exploiting and combining knowledge accumulated by multiple agents. These agents operate in the same task environment but follow possibly different trajectories. We discuss methods of combining the knowledge structures associated with the multiple agents and different strategies (with varying overheads) for knowledge communication between agents. Results of simulation experiments are also presented to indicate that combining multiple learning agents is a promising direction to improve learning speed. The method also performs significantly better than some of the fastest MDP learning algorithms such as the prioritized sweeping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to Act using Real-Time Dynamic Programming. Artificial Intelligence, Special Volume; Computational Research on Interaction and Agency 72(1), 81–138 (1995)

    Google Scholar 

  2. Laskari, Y., Metral, M., Maes, P.: Collaborative interface agents. In: Proceedings of AAAI conference (1994)

    Google Scholar 

  3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  5. Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Transactions on Automatic Control 42(2) (February 1997)

    Google Scholar 

  6. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master level play. Neural Computation 6(2), 215–219 (1994)

    Article  Google Scholar 

  7. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  8. Moore, A.W., Atkeson, C.G.: Prioritized Sweeping: Reinforcement Learning with Less Data and Less Real Time. Machine Learning 13 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mukhopadhyay, S., Varghese, J. (2000). Multi-agent Adaptive Dynamic Programming. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds) MICAI 2000: Advances in Artificial Intelligence. MICAI 2000. Lecture Notes in Computer Science(), vol 1793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720076_52

Download citation

  • DOI: https://doi.org/10.1007/10720076_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67354-5

  • Online ISBN: 978-3-540-45562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics