Skip to main content

Non-trivial Symbolic Computations in Proof Planning

  • Conference paper
Frontiers of Combining Systems (FroCoS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1794))

Included in the following conference series:

Abstract

We discuss a pragmatic approach to integrate computer algebra into proof planning. It is based on the idea to separate computation and verification and can thereby exploit the fact that many elaborate symbolic computations are trivially checked. In proof planning the separation is realized by using a powerful computer algebra system during the planning process to do non-trivial symbolic computations. Results of these computations are checked during the refinement of a proof plan to a calculus level proof using a small, self-implemented system that gives us protocol information on its calculation. This protocol can be easily expanded into a checkable low-level calculus proof ensuring the correctness of the computation. We demonstrate our approach with the concrete implementation in the ΩMEGA system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, A., Gottliebsen, H., Linton, S., Martin, U.: VSDITLU: a verifiable symbolic definite integral table look-up. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 112–126. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Andrews, P., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A Theorem Proving System for Classical Type Theory. J. of Autom. Reasoning 16(3), 321–353 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ballarin, C., Homann, K., Calmet, J.: Theorems and Algorithms: An Interface between Isabelle and Maple. In: Proc. of ISSAC 1995, pp. 150–157. ACM Press, New York (1995)

    Chapter  Google Scholar 

  4. Bauer, A., Clarke, E., Zhao, X.: Analytica: an Experiment in Combining Theorem Proving and Symbolic Computation. J. of Autom. Reasoning 21(3), 295–325 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310. Springer, Heidelberg (1988)

    Google Scholar 

  6. Cannon, J., Playoust, C.: Algebraic Programming with Magma. Springer, Heidelberg (1998)

    Google Scholar 

  7. Cheikhrouhou, L., Sorge, V.: PDS — A Three-Dimensional Data Structure for Proof Plans. In: Proc. of ACIDCA 2000 (2000)

    Google Scholar 

  8. Church, A.: A Formulation of the Simple Theory of Types. J. of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clément, D., Montagnac, F., Prunet, V.: Integrated Software Components: a Paradigm for Control Integration. In: Endres, A., Weber, H. (eds.) SDE 1991. LNCS, vol. 509. Springer, Heidelberg (1991)

    Google Scholar 

  10. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

    Article  MATH  Google Scholar 

  11. Franke, A., Hess, S.: Agent-Oriented Integration of Distributed Mathematical Services. J. of Universal Computer Science  5(3), 156–187 (1999)

    Google Scholar 

  12. The GAP Group: GAP — Groups, Algorithms, and Programming, Version 4, Aachen, St Andrews (1998), http://www-gap.dcs.st-and.ac.uk/~gap

  13. Gentzen, G.: Untersuchungen über das Logische Schlieβen I und II. Mathematische Zeitschrift 39, 176–210, 405–431 (1935)

    Google Scholar 

  14. Gordon, M., Melham, T.: Introduction to HOL. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

  15. Gordon, M., Wadsworth, C.P., Milner, R. (eds.): Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)

    MATH  Google Scholar 

  16. The Ωmega Group: Ωmega: Towards a Mathematical Assistant. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 252–255. Springer, Heidelberg (1997)

    Google Scholar 

  17. Harrison, J., Théry, L.: A Skeptic’s Approach to Combining HOL and Maple. J. of Autom. Reasoning 21(3), 279–294 (1998)

    Article  MATH  Google Scholar 

  18. Kerber, M., Kohlhase, M., Sorge, V.: Integrating Computer Algebra Into Proof Planning. J. of Autom. Reasoning 21(3), 327–355 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Melis, E.: The “Limit” Domain. In: Proc. of the Fourth International Conference on Artificial Intelligence in Planning Systems, pp. 199–206 (1998)

    Google Scholar 

  20. Melis, E., Sorge, V.: Specialized External Reasoners in Proof Planning. Seki Report SR-00-01, Computer Science Department, Universität des Saarlandes (2000)

    Google Scholar 

  21. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining Specification, Proof Checking, and Model Checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

    Google Scholar 

  22. Redfern, D.: The Maple Handbook: Maple V Release 5. Springer, Heidelberg (1998)

    Google Scholar 

  23. Sorge, V.: Integration eines Computeralgebrasystems in eine logische Beweisumgebung. Master’s thesis, Universität des Saarlandes (November 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sorge, V. (2000). Non-trivial Symbolic Computations in Proof Planning. In: Kirchner, H., Ringeissen, C. (eds) Frontiers of Combining Systems. FroCoS 2000. Lecture Notes in Computer Science(), vol 1794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720084_9

Download citation

  • DOI: https://doi.org/10.1007/10720084_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67281-4

  • Online ISBN: 978-3-540-46421-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics