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Abstract. Although a large variety of data analysis tools are available
on the market today, none of them is perfect; they all have their strengths
and weaknesses. In such a situation it is important that a user can en-
hance the capabilities of a data analysis tool by his or her own favourite
methods in order to compensate for shortcomings of the shipped version.
However, only few commercial products offer such a possibility. A rare
exception is DataEnginetm, which is provided with a well-documented
interface for user-defined function blocks (plug-ins). In this paper we
describe three plug-ins we implemented for this well-known tool: An ad-
vanced fuzzy clustering plug-in that extends the fuzzy c-means algorithm
(which is a built-in feature of DataEnginetm) by other, more flexible al-
gorithms, a decision tree classifier plug-in that overcomes the serious
drawback that DataEnginetm lacks a native module for this highly im-
portant technique, and finally a naive Bayes classifier plug-in that makes
available an old and time-tested statistical classification method.

1 Introduction

The rapidly growing amount of data that is collected and stored nowadays has
created a need for intelligent and easy to use data analysis software, since we are
already far beyond the point up to which a “manual” analysis is possible. Several
companies have responded to this need and as a consequence a variety of tools
and software packages, each with its own strengths and weaknesses, is available
today. In this paper we concentrate on one of them, namely DataEnginetm1, a
data analysis tool that is strongly oriented towards soft computing methods [1].
Of course, it also offers basic statistical techniques, but its main strengths are
fuzzy logic based methods (fuzzy rule bases, fuzzy c-means clustering) and arti-
ficial neural networks (multi-layer perceptrons, (fuzzy) Kohonen feature maps).
For an impression of this program, see Fig. 1, which shows its main window.

An important strength of DataEnginetm is that it is equipped with what
may be called a “graphical programming interface”, although it is not the only
1 DataEnginetm is distributed by Management Intelligenter Technologien GmbH,

Aachen, Germany. It is available for MS Windows 95/98tm and MS Windows NTtm.



Fig. 1. DataEnginetm main window with some example visualizations. In the back-
ground there is a so-called “card” specifying a data flow.

Fig. 2. A so-called “card” of DataEnginetm (left), i.e. a workspace in which a data flow
can be specified with a graphical macro language consisting of function blocks, and the
configuration dialog of a function block (right).

tool on the market that uses such an interface. This interface allows a user to
specify a data flow in a kind of graphical macro language that consists of function
blocks, each of which—depending on its type—aggregates, modifies, analyses, or
visualizes the data or constructs a model. The basic version of DataEnginetm

offers a rich variety of techniques in the form of function blocks, including data
access (flat files or ODBC), data preprocessing, descriptive statistics, 2D and
3D visualizations, training and executing neural networks etc. Examples of the
visualization capabilities of Data Enginetmare shown in Fig. 1.



An example of a so-called “card”, i.e. a workspace in which a data flow can
be specified graphically, is shown on the left in Fig. 2. It describes the data flow
for the induction, pruning, and testing of a decision tree. On the left there are
two function blocks labelled “Eingabe Datei”2 which provide access to data files,
the upper to the training, the lower to the test data. The function block to the
right of the upper input block (labelled “Splitten”) splits the data flow, so that
the same input data can be fed into several function blocks. The two topmost
function blocks in the middle column induce (“Ent.baum lernen”) and prune
(“Ent.baum stutzen”) a decision tree on the data, the other two (“Ent.baum
ausführen”) execute the pruned decision tree on the training and the test data.3

(That it is the pruned decision tree that is executed cannot be read directly from
this card, though, because it is passed via a file. DataEnginetm does not offer
an explicit facility to pass models between function blocks.) The result of each
execution is analysed by computing confusion matrices (“X-Matrix”), which are
then displayed in a data editor (“Ausgabe Dateneditor”). Each function block
is equipped with a so-called configuration dialogue, in which parameters of the
block can be entered. As an example the configuration dialogue of the decision
tree induction function block is shown on the right in Fig. 2.

Despite the rich variety of methods it offers, DataEnginetm, like any other
data analysis tool, is far from perfect. Fortunately—and this is a rare exception—
a user need not be content with the capabilities of the shipped version, but
can compensate detected shortcomings by enhancing the program with so-called
user-defined function blocks or plug-ins. DataEnginetm supports a well-documen-
ted interface for Microsoft Visual C/C++tm, Borland C/C++tm and Borland
Delphitm (other languages are also possible, provided a MS Windowstm dynamic
link library can be created) via which the data tables of DataEnginetm can be
accessed and processed with any user-defined method. We have made extensive
use of this interface: up to now we have implemented three plug-ins to overcome
weaknesses of the original product or to extend its capabilities.

The first plug-in is a fuzzy clustering module [2], where clustering is the
process of finding groups of similar cases or objects in a given dataset. The term
“fuzzy” indicates that the grouping is not crisp, i.e. the cases or objects are
not assigned to one (and only one) cluster each, but may belong (with different
degrees) to more than one cluster. In many applications such a “softening” of
the boundaries between clusters leads to better results.

Although DataEnginetm is equipped with a built-in fuzzy clustering module,
it is rather limited in this respect, since it only offers the standard fuzzy c-means
algorithm. However, there are several other fuzzy clustering algorithms that are
much more flexible with respect to the shape and the size of the clusters. In
order to make these algorithms more widely available we implemented these
methods as a plug-in. This plug-in can be obtained from the MIT GmbH, which
distributes it under the name “Advanced Fuzzy Clustering”.

2 Unfortunately we only have a German version of DataEnginetm, so all function
blocks are labelled in German.

3 These decision tree functions blocks are part of the plug-in described in section 3.



The other two plug-ins are classifiers. A classifier is a program which auto-
matically classifies a case or an object, i.e. assigns it according to its features to
one of several given classes. For example, if the cases are patients in a hospital,
the attributes are properties of the patients (e.g. sex, age, etc) and their symp-
toms (e.g. fever, high blood pressure, etc), the classes may be diseases or drugs
to administer. The automatic induction of a classifier from a dataset of sample
cases is a very frequent task in applications.

The best-known type of classifier is, of course, the decision tree. However,
although a decision tree induction module cannot be dispensed with in data
analysis—several data analysis tools even rely exclusively on this comprehensi-
ble and often highly successful method—DataEnginetm lacks a native module
for this type of classifier. In order to overcome this serious drawback, we imple-
mented the well-known top-down induction method for decision trees [3]. The
“DecisionXpert” plug-in, which is offered by the MIT GmbH as an add-on for
DataEnginetm, is based on this implementation.

The second classifier plug-in uses the old and time-tested naive Bayes ap-
proach of classical statistics to construct a classifier and to classify new cases [4].
Although it is not a technique a data analysis tool is obliged to offer (like deci-
sion trees), it is often a convenient alternative to other classification techniques,
since it is a very efficient method and yields classifiers that are, like decision
trees, easily comprehensible.

The following sections each describe one plug-in: the advanced fuzzy clus-
tering plug-in is discussed in section 2, the decision tree plug-in in section 3,
and the naive Bayes classifier plug-in in section 4. Each section first introduces
the basic theory underlying the implemented methods and then describes the
function blocks of the plug-in. We tried to make these sections as self-contained
as possible so that any of them can be read independently of any other.

2 The Fuzzy Clustering Plug-In

The terms “classification” and “to classify” are ambiguous. With respect to
classifiers like decision trees, they are used to describe the process of assigning a
class from a predefined set to an object or case under consideration. In classical
statistics, however, these terms usually have a different meaning: they are used
to describe the process of dividing a dataset of sample cases into groups of similar
cases, with the groups not predefined, but to be found by the classification algo-
rithm. This process is also called classification, because the groups to be found
are usually (and confusingly) called classes. To avoid the confusion that may
result from this ambiguity, the latter process, i.e. dividing a dataset into groups
of similar cases, is often called clustering or cluster analysis, thus replacing the
ambiguous term class with the less ambiguous cluster. Nevertheless a reader
should keep in mind that in this section “to classify” has a different meaning
than in the following ones (except where explicitly indicated otherwise).

Cluster analysis is, as already mentioned, a technique to classify data, i.e. to
divide a given dataset of sample cases into a set of classes or clusters. The goal



is to divide the dataset in such a way that two cases from the same cluster are
as similar as possible and two cases from different clusters are as dissimilar as
possible. Thus one tries to model the human ability to group similar objects or
cases into classes and categories.

In classical cluster analysis [5] each case or object is assigned to exactly one
cluster, i.e. classical cluster analysis yields a crisp partitioning of a dataset with
“sharp” boundaries between the clusters. It is therefore also called crisp cluster
analysis. A crisp partitioning of the dataset, however, though often indisputably
successful, is not always appropriate. If the “clouds” formed by the data points
corresponding to the cases or objects under consideration are not clearly sepa-
rated by regions bare of any data points, but if, in contrast, in the joint domain of
the attributes there are only regions of higher and lesser data point density, then
the boundaries between the clusters can only be drawn with a certain amount
of arbitrariness. Due to this arbitrariness it may be doubted, at least for data
points close to the boundaries, whether a definite assignment to one class is
justified.

An intuitive approach to deal with such situations is to make it possible that
a data point belongs in part to one cluster, in part to a second etc. Fuzzy cluster
analysis does just this: it relaxes the requirement that a data point must be as-
signed to exactly one cluster by allowing gradual memberships, thus offering the
opportunity to deal with data points that do not belong definitely to one cluster
[6, 7]. In general, the performance of fuzzy clustering algorithms is superior to
that of the corresponding crisp clustering algorithms [6].

2.1 Fuzzy C-Means Algorithm

A widely used fuzzy clustering algorithm is the fuzzy c-means algorithm (FCM )
[6] that is a built-in function of DataEnginetm. This algorithm divides a given
dataset X = {x1, . . . , xn} ⊆ IRp into C clusters by minimizing the objective
function

J(X, U, β) =
c∑

i=1

n∑
j=1

um
ij d2(βi, xj) (1)

subject to

n∑
j=1

uij > 0 for all i ∈ {1, . . . , c} (2)

c∑
i=1

uij = 1 for all j ∈ {1, . . . , n} (3)

where uij ∈ [0, 1] is the membership degree of datum xj to cluster i, βi = (ci)
is the the prototype of cluster i, ci is the centre of cluster i, and d(βi, xj) is the
distance between datum xj and prototype βi. The c×n matrix U = [uij ] is also
called the fuzzy partition matrix and the parameter m is called the fuzzifier.
Usually m = 2 is chosen.



Fig. 3. Dataset 1 (left) and clustering results with the fuzzy c-means algorithm (middle)
and the Gustafson-Kessel algorithm (right) for three clusters.

Constraint (2) guarantees that no cluster is empty and constraint (3) en-
sures that the sum of the membership degrees for each datum equals 1. Fuzzy
clustering algorithms which satisfy these constraints are also called probabilis-
tic clustering algorithms, since the membership degrees for one datum formally
resemble the probabilities of its being a member of the different cluster.

The fuzzy c-means algorithm divides a given dataset X into c clusters of
equal size and shape. The shape of the clusters depends on the distance func-
tion d2(ci, xj). With the Euclidean distance, the most common choice, it divides
a dataset into c spherical clusters.

Although the fuzzy c-means algorithm is widely used, it fails for some clas-
sification tasks, as can be seen in Figs. 3 and 4. If the shape of the clusters is
not spherical or if the clusters differ considerably in their size, the result of the
fuzzy c-means algorithm is often not very intuitive and only poorly fits the data.
Another problem of the fuzzy c-means algorithm is its sensitivity to noise and
outliers. This sensitivity is caused by restriction (3), which equips every datum
with the same weight and thus the same influence on the classification result.

To amend these problems we have implemented several fuzzy clustering al-
gorithms that can be seen as extensions of the fuzzy c-means method. These
algorithms divide a given dataset into clusters of different size and shape and
are less sensitive to noise and outliers.

2.2 Possibilistic Clustering Algorithms

In applications it is a common requirement that the algorithms used should be
robust. With respect to noise and outliers, this means that the performance of
the algorithms should not deteriorate drastically due to noise or outliers [8].
Unfortunately, due to restriction (3) the fuzzy c-means algorithm is sensitive to
noise and outliers and thus not an ideal of robustness.

One approach to reduce this sensitivity is to use an extra cluster for noise and
outliers [9, 8]. Another approach is to remove restriction (3) so that it becomes
possible that data that resembles noise or outliers can have a low membership



Fig. 4. Dataset 2 (left) and clustering results with the fuzzy c-means algorithm (middle)
and the Gustafson-Kessel algorithm (right) for four clusters.

degree to all clusters. This approach is usually called possibilistic clustering. To
avoid the trivial solution, i.e. uij = 0 for all i ∈ {1, . . . , c}, j ∈ {1, . . . , n}, the
objective function of a possibilistic clustering algorithm has to be modified to:

J(X, U, β) =
c∑

i=1

n∑
j=1

um
ij d2(βi, xj) +

c∑
i=1

ηi

n∑
j=1

(1− uij)m (4)

where ηi > 0. The first term minimizes the weighted distances and the second
term avoids the trivial solution. A fuzzy clustering algorithm that minimizes
the above function subject to constraint (2) is called a possibilistic clustering
algorithm, since the membership degrees for a datum resemble the possibility (in
the sense of possibility theory) of its being a member of the different clusters.

Minimizing the objective function (4) with respect to the membership degrees
leads to the following equation for updating the membership degrees uij [10]:

uij =
1

1 +
(

d2(xj , βi)
ηi

) 1
m−1

. (5)

Equation (5) shows that ηi determines the distance at which the membership
degree equals 0.5. If d2(xj , βi) equals ηi, the membership degree is 0.5. So it is
useful to choose ηi for each cluster separately [10]. ηi can be determined, for
instance, by computing the fuzzy intra cluster distance (6)

ηi =
K

Ni

n∑
j=1

um
ij d2(xj , βi) (6)

where Ni =
∑n

j=1(uij)m. Usually K = 1 is chosen. In contrast to probabilistic
clustering algorithm it is recommended to choose m = 1.5 [11].

The fundamental difference between a probabilistic clustering algorithm and
a possibilistic clustering algorithm is that a probabilistic clustering algorithm is



primarily a partitioning algorithm while a possibilistic clustering algorithm is a
mode-seeking algorithm, i.e. is, a possibilistic clustering algorithm partitions a
data set into c clusters, regardless of how many clusters are actually present. In
contrast, each component generated by a possibilistic clustering algorithm cor-
responds to a dense region in the data set, i.e. if the actual number of clusters is
smaller than c, some clusters might be detected twice, and if the number of clus-
ters is higher than c, often some clusters go undetected. To avoid some clusters
being detected twice while other clusters go undetected, it is recommended to
initialize a possibilistic clustering algorithm with the results of the corresponding
probabilistic version if the data set is not too noisy [11].

The possibilistic fuzzy c-means algorithm has been successfully used in sev-
eral applications and it often helps to deal with noisy data [11, 12]. However,
if the data is too noisy, the above initialization fails. In that case the user has
to be very careful with the choice of ηi and the initialization of the possibilis-
tic clustering algorithm [13, 11, 14]. As an attempt to improve the possibilistic
clustering algorithm, a mixed fuzzy-possibilistic version has been suggested [14].

2.3 The Gustafson-Kessel Algorithm and the FMLE

In contrast to the fuzzy c-means algorithm the Gustafson-Kessel algorithm (GK )
searches for clusters of different shape [15]. To determine the shape of the
clusters the algorithm computes for each cluster a separate norm matrix Ai,
Ai = (det Ci)

1
n C−1

i . These norm matrices are updated together with the cen-
tres of the corresponding clusters. Therefore the prototypes of the clusters are a
pair (ci, Ci), where ci is the centre of the cluster and Ci is the covariance matrix,
which defines the shapes of the clusters.

In a fashion similar to the fuzzy c-means algorithm, the Gustafson-Kessel
computes the distance to the prototypes as:

d2(xj , βi) = (detCi)
1
n (xj − ci)T C−1

i (xj − ci). (7)

To minimize the objective function with respect to the prototypes, the prototypes
are updated according to the following equations [16]:

ci =
1
Ni

n∑
j=1

um
ij xj , (8)

Ci =
1
Ni

n∑
j=1

um
ij (xj − ci)(xj − ci)T . (9)

The Gustafson-Kessel algorithm is a simple fuzzy clustering algorithm to detect
ellipsoidal clusters with approximately the same size but different shapes.

Another modification of the fuzzy c-means algorithm is the fuzzy maximum
likelihood estimation algorithm (FMLE ) [17]. This algorithm divides a given
data set into clusters of different shape and different size. The idea of the FMLE
algorithm is to interpret the data set as a p-dimensional normal distribution.



Therefore the distance of a datum to a cluster is inversely proportional to the
posterior possibility that a datum xij is the realization of the ith normal distri-
bution. Therefore the distance between a datum xj and a cluster ci is computed
as:

d2(xj , βi) = d2
ij =

(det(Ci))
1
2

Pi
exp

(
(xj − ci)C−1

i (xj − ci)T

2

)
. (10)

2.4 Simplified Versions of the GK and the FMLE

The Gustafson-Kessel and the FMLE algorithm both extend the fuzzy c-means
algorithm by computing covariance matrices for each cluster. Since the covari-
ance matrices decode norms which transform spherical clusters to ellipses or
ellipsoids, the Gustafson-Kessel and the FMLE algorithm are able to detect
clusters of different shape.

The idea of the simplified versions of the Gustafson-Kessel and the FMLE
algorithm is to use only diagonal matrices instead of positive definite symmetric
matrices as the Gustafson-Kessel or the FMLE algorithm [16], i.e. the algorithms
search only for clusters that are axis parallel. This has the advantage that it is
not necessary to invert matrices and to compute determinants. Therefore these
algorithms have a lower computational complexity than the Gustafson-Kessel
and the FMLE algorithm. These axis-parallel variants are an interesting com-
promise between the flexibility of the original versions and the low computational
costs of the fuzzy c-means algorithm.

In addition, these algorithms are especially suited for fuzzy rule generation,
i.e. for extracting descriptive rules from a data set by classifying the inputs.
Since for each rule each input variable has its own interval, the clusters have to
describe rectangles, which can be approximated well by axis-parallel clusters.

2.5 The DataEnginetm Plug-In

We have implemented the fuzzy clustering algorithms described in this section
as a plug-in for DataEnginetm. The plug-in consists of five function blocks:

Fuzzy Cluster Analysis — Several fuzzy clustering algorithms
This function block contains the main functionality of the plug-in. It contains
the fuzzy clustering algorithms and executes them on the given dataset. In the
configuration dialogue the algorithm, the number of clusters, and several pa-
rameters of the algorithm can be specified. Its input is unclassified data and its
output is the classified data and their membership degrees to the clusters that
can be used as input for other function blocks. In addition, the prototypes of the
clusters are stored in a user-specified file. The prototypes can be used by other
function blocks of the plug-in, for instance, as a classifier.

Classification — Classify a dataset
This function block classifies a dataset with respect to clusters that have been
determined with the above function block. The cluster prototypes are read from
the file to which they were saved by the first function block.



Validity Measures — Evaluation of a clustering
This function block is used to assess the quality of a computed classification.
Several different validity measures can be chosen.

Parameter Extraction — Extract cluster parameters
This function block extracts the parameters of the clusters. Depending on the
algorithm, the centre and the covariance matrix of each cluster are extracted.

Labelling — Labelling of a classification
With this function block labels (i.e. names) can be assigned to the clusters. This
can be done automatically based on labelled data or manually.

3 The Decision Tree Plug-In

Decision trees are classifiers which—as the name already indicates—have a tree-
like structure. To each leaf a class, to each inner node an attribute is assigned.
There can be several leaves associated with the same class and several inner
nodes associated with the same attribute. The descendants of the inner nodes
are reached via edges, to each of which a value of the attribute associated with
the node is assigned. Each leaf represents a decision “The case considered be-
longs to class c.”, where c is the class associated with the leaf. Each inner node
corresponds to an instruction “Test attribute A and follow the edge to which
the observed value is assigned!”, where A is the attribute associated with the
node. A case is classified by starting at the root of the tree and executing the
instructions in the inner nodes until a leaf is reached, which then states a class.

From the above description it is obvious that decision trees are very simple
to use. Unfortunately, it is not quite as simple to construct them manually. Es-
pecially if the number of possible test attributes is large and the available knowl-
edge about the underlying relations between the classes and the test attributes
is vague, manual construction can be tedious and time consuming. However, if
a database of sample cases is available, one can try an automatic induction [18–
20]. The usual approach is a top-down process (TDIDT — top-down induction
of decision trees), which uses a “divide and conquer” principle together with a
greedy selection of test attributes according to the value ascribed to them by
an evaluation measure. In section 3.1 we illustrate this approach using a simple
(artificial) medical example.

Since the success of the induction algorithm depends heavily on the attribute
selection measure used, in section 3.2 we list a large variety of such measures.
However, limits of space prevent us from discussing in detail the ideas underlying
them. Which of these measures yields the best results cannot be stated in general,
but depends on the application. Therefore all of these measures can be selected
for the decision tree induction function block of the DataEnginetm plug-in we
describe in section 3.3. In addition to the induction function block, this plug-in
consists of function blocks for pruning a decision tree, for executing a decision
tree to classify a set of cases and for computing a confusion matrix (which is
useful to assess the quality of a learned classifier).



Table 1. Patient data consisting of a set of descriptive attributes together with an
effective drug (effective with respect to some unspecified disease).

No Sex Age Blood Pressure Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A

3.1 Induction of Decision Trees

As already remarked above, the induction of decision trees from data rests on a
“divide and conquer” principle together with a greedy selection of the attributes
to test: from a given set of classified case descriptions the conditional frequency
distributions of the classes, given the attributes used in the case descriptions,
are computed. These distributions are evaluated using some measure and the
attribute yielding the best value is selected as the next test attribute. This is the
greedy part of the algorithm. Then the case descriptions are divided according
to the values of the chosen test attribute and the procedure is applied recursively
to the resulting subsets. This is the “divide and conquer” part of the algorithm.
The recursion stops, if either all cases of a subset belong to the same class, or no
attribute yields an improvement of the classification, or there are no attributes
left for a test. We illustrate this procedure with a simple example and state the
induction algorithm in pseudo-code.

A Simple Example. Table 1 shows the features of twelve patients—sex, age,
and a qualitative statement of the blood pressure—together with a drug, which
for the patient has been effective in the treatment of some unspecified disease.
If we neglect the features of the patients, the effective drug can be predicted only
with a rate of success of 50%, since drug A as well as drug B were effective in
six cases. Because such a situation is unfavourable for future treatments, we try
to induce a decision tree, which will (hopefully) allow us to derive the effective
drug from the features of a patient.

To this end we consider all conditional distributions of the effective drugs
given the available features (see table 2). It is obvious that the patient’s sex is
without any influence, since for male as well as for female patients both drugs



Table 2. The conditional distributions of the effective drug given the sex (left), the
age (middle, divided into “less than 40” and “over 40”) and the blood pressure (right).

No Sex Drug

1 male A
6 male A

12 male A
4 male B
8 male B
9 male B

3 female A
5 female A

10 female A
2 female B
7 female B

11 female B

No Age Drug

1 20 A
11 26 B
6 29 A

10 30 A
4 33 B
3 37 A

8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B

No Blood Pressure Drug

3 high A
5 high A

12 high A

1 normal A
6 normal A

10 normal A
2 normal B
7 normal B
9 normal B

4 low B
8 low B

11 low B

Table 3. The second order conditional distributions of the effective drug given the
blood pressure and the sex (left) and the blood pressure and the age (right, divided
into “less than 40” and “over 40”).

No Blood Pressure Sex Drug

3 high A
5 high A

12 high A

1 normal male A
6 normal male A
9 normal male B

2 normal female B
7 normal female B

10 normal female A

4 low B
8 low B

11 low B

No Blood Pressure Age Drug

3 high A
5 high A

12 high A

1 normal 20 A
6 normal 29 A

10 normal 30 A

7 normal 52 B
9 normal 61 B
2 normal 73 B

11 low B
4 low B
8 low B

were effective in half of the cases (thus being politically correct, i.e. here non-
sexist). The patient’s age yields a better result: below forty years of age drug A
has been effective in four out of six cases. Over forty years of age the same holds
for drug B. Hence, the success rate is 67%. However, testing the blood pressure
yields an even better result: if it is high, drug A, if it is low, drug B is the correct
drug. Only if the blood pressure is normal, the prediction is not improved. The
overall success rate is 75%.
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Fig. 5. The induced decision tree for the effective drug.

Since the blood pressure allows us to determine the effective drug with the
highest rate of success, it is chosen as the first test attribute and placed at the
root of the decision tree. The case descriptions of the table are divided according
to the values they contain for this attribute. The effective drug is definite for
patients with low or high blood pressure, and thus these cases need not be
considered further. For the patients with normal blood pressure we test again the
conditional distribution of the effective drug given the patient’s sex and age (see
Table 3). The patients’ sex allows us to determine the correct drug for patients
with normal blood pressure with a success rate of 67%. However, dividing the
patients in those younger than forty and those older, perfectly separates the
cases in which drug A was effective from those in which drug B was effective.
Therefore the age is chosen as a second test attribute and thus a reliable method
to determine the effective drug has been found. The corresponding decision tree,
which can be read directly from Table 3 (right), is shown in Fig. 5.

The Induction Algorithm. The general algorithm to induce a decision tree
from data is shown in Fig. 6 in a pseudo-code similar to Pascal. In the first part of
the algorithm for each attribute the frequency distribution of its values and the
classes is determined. From this distribution the value of an evaluation measure
is computed. The attribute with the highest value is stored in the variable best A.
This is a crucial step in the algorithm, since a wrong assessment of the attributes
and thus a bad choice for the test attribute can severely diminish the classifier’s
performance. (More about evaluation measures can be found in section 3.2.)
In the second part of the algorithm either a leaf or a test node is created —
depending on the outcome of the first part. If a test node is created, the case
descriptions are divided according to their value for the chosen test attribute
and for each resulting subset the function grow tree is called recursively.

To simplify the algorithm we assumed in this description that all attributes
have a finite number of symbolic values. Integer or real-valued attributes can



function grow tree (S : set of cases) : node;
begin

best v := WORTHLESS;
for all untested attributes A do

compute frequencies Nij , Ni., N.j

for 1 ≤ i ≤ nC and 1 ≤ j ≤ nA;
compute value v of a selection measure

using Nij , Ni., N.j ;
if v > best v
then best v := v;

best A := A;
end;

end
if best v = WORTHLESS
then create leaf node n;

assign majority class of S to n;
else create test node n;

assign test on attribute best A to n;
for all a ∈ dom(best A) do

n.child[a] := grow tree(S|best A=a);
end;

end;
return n;

end; (* grow tree() *)

Fig. 6. The TDIDT (top-down induction of decision trees) algorithm.

be processed by sorting the occurring values and choosing a cut value for each
pair of consecutive values (e.g. the arithmetic mean of the two values). Using
this cut value an (artificial) symbolic attribute with values “greater than cut
value” and “less than cut value” is created. The best cut value, i.e. the one
whose corresponding symbolic attribute is rated best by the chosen evaluation
measure, is selected to represent the numeric attribute.

During the recursive descent already tested symbolic attributes are marked,
since another test of these attributes is obviously pointless: dividing the cases
leads to all cases having the same value for a tested attribute in the deeper levels
of the recursion. Integer and real-valued attributes, however, are not marked,
since deeper down in the recursion a different cut value may be chosen and thus
the range of values may be subdivided further.

After a decision tree has been induced, it is often pruned in order to simplify
it and to reduce possible overfitting to random properties of the training data.
However, reasons of space prevent us from studying this step in detail.

3.2 Attribute Selection Measures

As already indicated at the beginning of this section and substantiated by the
description of the general induction algorithm in the preceding section, the suc-



cess of the induction of a decision tree from data depends to a high degree on the
attribute selection measure used. Several years of research, not only in decision
tree induction but also in the closely related area of inducing Bayesian networks
from data, has led to a large variety of evaluation measures, which draw from
a substantial set of ideas to assess the quality of an attribute. Unfortunately,
limits of space prevent us from discussing in detail these measures and the ideas
underlying them. Hence we only give a list:

– information gain Igain (mutual information/cross entropy) [21, 22, 19]
– information gain ratio Igr [19, 20]
– symmetric information gain ratio Isgr [23]
– Gini index [18, 24]
– symmetric Gini index [25]
– modified Gini index [26]
– relief measure [27, 26]
– χ2 measure
– weight of evidence [28]
– relevance [29]
– K2 metric [30, 31]
– BDeu metric [32, 31]
– minimum description length with relative frequency coding lrel [28]
– minimum description length with absolute frequencies coding labs [28]

(closely related to the K2 metric)
– stochastic complexity [33, 34]
– specificity gain Sgain [35, 36]
– (symmetric) specificity gain ratio Sgr [36]

It may be worth noting that the K2 metric and the BDeu metric were originally
developed for learning Bayesian networks and that the specificity measures are
based not on probability or information theory but on possibility theory—an al-
ternative theory for reasoning with imperfect knowledge that is closely connected
to fuzzy set theory. A reader who is interested in more detailed information about
the measures listed above may consult [36] or [37].

Unfortunately, no general rule can be given as to which measure should be
chosen. Although some measures (e.g. the information gain ratio and the min-
imum description length measures) perform slightly better on average, all have
their strengths and weaknesses. For each measure there are specific situations in
which it performs best and hence it can pay to try several measures.

3.3 The DataEnginetm Plug-In

We have implemented a powerful decision tree induction algorithm as a plug-
in for DataEnginetm in order to improve this esteemed tool even further. This
plug-in consists of four function blocks:

grow — grow a decision tree
This function block receives as input a table of classified sample cases and grows



a decision tree. The data types of the table columns (either symbolic or nu-
meric) can be stated in the unit fields of the table columns, which can also be
used to instruct the algorithm to ignore certain columns. Although tables passed
to user-defined functions blocks may not contain unknown values, this function
block provides a facility to specify which table fields should be considered as un-
known: in the configuration dialogue one may enter a value for the lowest known
value. All values below this value are considered to be unknown. In addition the
configuration dialogue lets you choose the attribute selection measure (see the
preceding section for a list), whether the measure should be weighted with the
fraction of known values (to take into account the lesser utility of rarely known
attributes), whether the algorithm should try to form subsets on symbolic at-
tributes, a maximal height for the decision tree to be learned, and the name of
a file into which the learned decision tree should be saved.

prune — prune a learned decision tree
This function block receives as input a learned decision tree stored in a file
and a table of classified sample cases, which may or may not be the table from
which the decision tree was learned. It prunes the decision tree using the table
applying one of two pruning methods (either pessimistic pruning or confidence
level pruning), which are governed by a parameter that can be entered in the
configuration dialogue. In addition, the configuration dialogue lets you enter a
maximal height for the pruned tree, and (to be able to deal with unknown values,
see above) a lowest known value. The pruned decision tree is written to another
file, whose name can also be specified in the configuration dialogue.

exec — execute a learned decision tree
This function block receives as input a learned (and maybe pruned) decision
tree stored in a file and a table of cases. It executes the decision tree for each
case in the table and adds to it a new column containing the class predicted by
the decision tree. The configuration dialogue lets you enter the name of the new
column and (as described for the two blocks above) a lowest known value.

xmat — compute a confusion matrix
This function block receives as input a table. Its configuration dialogue lets you
enter the names of two columns for which a confusion matrix shall be determined.
It generates a table containing the confusion matrix (either with absolute or
relative numbers) and the sums over lines and columns (excluding the diagonal
elements). These sums are the number of confusions or misclassifications, if one
column contains the correct classification, the other the prediction of a classifier.

All function blocks that deal directly with decision trees, i.e. the blocks grow,
prune, and exec also comprise a decision tree viewer which lets you navigate
through a learned decision tree using the well-known MS Windowstm tree view
control (used, for example, in the MS Windowstm explorer to visualize the hier-
archic file system). Hence you need not accept the learned classifier as a black
box (as is usually the case for, for example, neural networks), but you can inspect
how an induced decision tree arrives at its results.



4 The Naive Bayes Classifier Plug-In

Naive Bayes classifiers [38–41] are an old and well-known type of classifiers which
use a probabilistic approach to assign the classes, i.e. they try to compute the
conditional probabilities of the different classes given the values of other at-
tributes and predict the class with the highest conditional probability. Since it
is usually impossible to store or even to estimate these conditional probabili-
ties, they exploit Bayes rule and a set of conditional independence statements
to simplify the task. A detailed description is given in section 4.1.

Due to the strong independence assumptions, but also because some at-
tributes may not be able to contribute to the classification accuracy, it is not
always advisable to use all available attributes. With all attributes a naive Bayes
classifier is more complicated than necessary and sometimes even yields results
that can be improved upon by using fewer attributes. Therefore a naive Bayes
classifier should be simplified. Two very simple methods to reduce the number
of attributes are discussed in section 4.2.

In section 4.3 we describe the plug-in we implemented for DataEnginetm.
This plug-in consists of three function blocks: one to induce (and simplify) a
naive Bayes classifier, one to classify new data, and one to compute a confusion
matrix to evaluate the quality of the induced classifier. The latter function block
is the same as the function block xmat of the decision tree plug-in.

4.1 Naive Bayes Classifiers

As already mentioned above, naive Bayes classifiers use a probabilistic approach
to classify data: they try to compute conditional class probabilities and then
predict the most probable class. To be more precise, let C denote a class attribute
with a finite domain of m classes, i.e. dom(C) = {c1, . . . , cm}, and let U =
{A1, . . . , An} be a set of other attributes used to describe a case or an object of
the universe of discourse. These other attributes may be symbolic, i.e. dom(Aj) =
{a(j)

1 , . . . , a
(j)
mj}, or numeric, i.e. dom(Aj) = IR. For simplicity, we always use the

notation a
(j)
ij

for a value of an attribute Aj , independent of whether it is a
symbolic or a numeric one.4 With this notation, a case or an object can be
described by an instantiation ω = (a(1)

i1
, . . . , a

(n)
in

) of the attributes A1, . . . , An

and thus the universe of discourse is Ω = dom(A1)× . . .× dom(An).
For a given instantiation ω, a naive Bayes classifier tries to compute the

conditional probability

P (C = ci | ω) = P
(
C = ci

∣∣∣ ∧
n
j=1Aj = a

(j)
ij

)
for all ci and then predicts the class for which this probability is highest. Of
course, it is usually impossible to store all of these conditional probabilities ex-
plicitly, so that a simple lookup would be all that is needed to find the most
4 To be able to use this notation for numeric attributes, one simply has to choose an

appropriate uncountably infinite index set Ij , from which the index ij is to be taken.



probable class. If there are numeric attributes, this is obvious (some parameter-
ized function is needed then). But even if all attributes are symbolic, such an
approach most often is infeasible: a class (or a class probability distribution) has
to be stored for each point of the Cartesian product of the attribute domains,
whose size grows exponentially with the number of attributes. To circumvent
this problem, naive Bayes classifiers exploit—as their name already indicates—
Bayes rule and a set of conditional independence assumptions. With Bayes rule
the conditional probabilities are inverted, i.e. naive Bayes classifiers consider5:

P
(
C = ci

∣∣∣ ∧
n
j=1Aj = a

(j)
ij

)
=

f
(∧

n
j=1Aj = a

(j)
ij

∣∣∣ C = ci

)
· P (C = ci)

f
(∧

n
j=1Aj = a

(j)
ij

) .

Of course, for this inversion to be possible, the probability density function
f
( ∧

Aj∈U Aj = a
(j)
ij

)
must be strictly positive.

There are two observations to be made about the inversion carried out above.
In the first place, the denominator of the fraction on the right can be neglected,
since for a given case or object to be classified, it is fixed and therefore does not
have any influence on the class ranking (which is all we are interested in). In ad-
dition, its influence can always be restored by normalizing the class distribution,
i.e. we can exploit:

f
(∧

n
j=1Aj = a

(j)
ij

)
=

m∑
i=1

f
(∧

n
j=1Aj = a

(j)
ij

∣∣∣ C = ci

)
· P (C = ci).

It follows that we only need to consider:

P
(
C = ci

∣∣∣ ∧
n
j=1Aj = a

(j)
ij

)
=

P (C = ci)
S

f
(∧

n
j=1Aj = a

(j)
ij

∣∣∣ C = ci

)
,

where S is a normalization constant.6

Secondly, we can see that just inverting the probabilities does not buy us any-
thing, since the probability space is just as large as it was before the inversion.
However, here the second ingredient of naive Bayes classifiers, which is responsi-
ble for the “naive” in their name, comes in, namely the conditional independence
assumptions. To exploit them, we first apply the chain rule of probability:

P
(
C = ci

∣∣∣ ∧
n
j=1Aj = a

(j)
ij

)
=

P (C = ci)
S

n∏
k=1

f
(
Ak = a

(k)
ik

∣∣∣ ∧
k−1
j=1Aj = a

(j)
ij

, C = ci

)
.

5 For simplicity, we always use a probability density function f , although this is strictly
correct only, if there is at least one numeric attribute. If all attributes are symbolic,
this should be a probability P . The only exception is the class attribute, since it
necessarily has a finite domain.

6 Strictly speaking, the constant S is dependent on the instantiation (a
(1)
i1

, . . . , a
(n)
in

).
However, as already said above, when classifying a given case or object, this instan-
tiation is fixed and hence we need to consider only one value S.
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Fig. 7. A naive Bayes classifier is a Bayesian network with a star-like structure.

Now we make the crucial assumption that given the value of the class attribute,
any attribute Aj is independent of any other. That is, we assume that knowing
the class is enough to determine the probability (density) for a value a

(j)
ij

, i.e.,
that we need not know the values of any other attributes. Of course, this is a
pretty strong assumption, which is very likely to fail. However, it considerably
simplifies the formula stated above, since with it we can cancel all attributes Aj

appearing in the conditions:

P
(
C = ci

∣∣∣ ∧
n
j=1Aj = a

(j)
ij

)
=

P (C = ci)
S

n∏
j=1

f
(
Aj = a

(j)
ij

∣∣∣ C = ci

)
.

This is the fundamental formula underlying naive Bayes classifiers. For a sym-
bolic attribute Aj the conditional probabilities P (Aj = a

(j)
ij

| C = ci) are stored
as a simple conditional probability table. This is feasible now, since there is only
one condition and hence only m · mj probabilities have to be stored.7 For nu-
meric attributes it is usually assumed that the probability density is a Gaussian
function (a normal distribution) and hence only the expected values µj(ci) and
the variances σ2

j (ci) need to be stored in this case.
It should be noted that naive Bayes classifiers can be seen as a special type

of probabilistic networks, or, to be more precise, of Bayesian networks [42]. Due
to the strong independence assumptions underlying them, the corresponding
network has a very simple structure: it is star-like with the class attribute being
the source of all edges (see Fig. 7).

Naive Bayes classifiers can easily be induced from a dataset of preclassi-
fied sample cases. All one has to do is to estimate the conditional probabili-
ties/probability densities f(Aj = a

(j)
ij

| C = ci) using, for instance, maximum
likelihood estimation. For symbolic attributes, this yields:

P̂ (Aj = a
(j)
ij

| C = ci) =
#(Aj = a

(j)
ij

, C = ci)

#(C = ci)
,

where #(C = ci) is the number of sample cases that belong to the class ci and
#(Aj = a

(j)
ij

, C = ci) is the number of sample cases belonging to class ci and

7 Actually only m · (mj − 1) probabilities are really necessary. Since the probabilities
have to add up to one, one value can be discarded from each conditional distribution.
However, in implementations it is usually much easier to store all probabilities.



Table 4. A naive Bayes classifier for the iris data. The normal distributions are de-
scribed by stating µ̂ ± σ̂.

iris type setosa versicolor virginica

prior prob. 0.333 0.333 0.333

petal length 1.46 ± 0.17 4.26 ± 0.46 5.55 ± 0.55

petal width 0.24 ± 0.11 1.33 ± 0.20 2.03 ± 0.27

having the value a
(j)
ij

for the attribute Aj . To ensure that the probability is
strictly positive (see above), it is assumed that there is at least one example for
each class in the dataset. Otherwise the class is simply removed from the domain
of the class attribute. If an attribute value does not occur given some class, its
probability is either set to 1

2N , where N is the number of sample cases, or a
uniform prior of, for example, 1

N is always added to the estimated distribution,
which is then renormalized (Laplace correction).

For a numeric attribute Aj the standard maximum likelihood estimation
functions

µ̂j(ci) =
1

#(C = ci)

#(C=ci)∑
k=1

a
(j)
ij(k)

for the expected value, where a
(j)
ij(k) is the value of the attribute Aj in the k-th

sample case belonging to class ci, and

σ̂2
j (ci) =

1
#(C = ci)

#(C=ci)∑
k=1

(
a
(j)
ij(k) − µ̂j(ci)

)2

for the variance can be used.
As an illustrative example, let us take a look at the well-known iris data

[43]. The problem is to predict the iris type (iris setosa, iris versicolor, or iris
virginica) from measurements of the sepal length and width and the petal length
and width. Due to the limited number of dimensions of a sheet of paper we
confine ourselves to the latter two measures. The naive Bayes classifier induced
from these two measures and all 150 cases is shown in Table 4. It is easy to see
from this table how different petal lengths and widths provide evidence for the
different types of iris flowers. The conditional probability density functions used
by this naive Bayes classifier to predict the iris type are shown graphically in
Fig. 8. The ellipses are the 2σ-boundaries of the (bivariate) normal distributions.
As a consequence of the strong conditional independence assumptions, these
ellipses are axis-parallel: the normal distributions are estimated separately for
each dimension and no covariance is taken into account.
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Fig. 8. Naive Bayes density functions for the iris data. The ellipses are the 2σ-
boundaries of the probability density functions.

4.2 Classifier Simplification

A naive Bayes classifier makes strong independence assumptions (see above).
It is not surprising that these assumptions are likely to fail. If they fail, the
classifier may be worse than necessary. In addition, some attributes may not
contribute to the classification accuracy, making the classifier more complicated
than necessary. To cope with these problems, simplification methods may be
used, for instance, simple greedy attribute selection. With this procedure one
can hope to find a subset of attributes for which the strong assumptions hold at
least approximately.

We consider here two very simple, but effective, attribute selection methods:
the first method starts with a classifier that simply predicts the majority class
and does not use any attribute information. Then attributes are added one by
one. In each step that attribute is selected which, if added, leads to the smallest
number of misclassifications on the training data. The process stops when adding
any of the remaining attributes does not reduce the number of errors.

The second method is a reversal of the first. It starts with a classifier that
uses all available attributes and then removes attributes step by step. In each
step that attribute is selected which, if removed, leads to the smallest number
of misclassifications on the training data. The process stops when removing any
of the remaining attributes leads to a larger number of errors.

4.3 The DataEnginetm Plug-In

We have implemented a naive Bayes classifier as a plug-in DataEnginetm in order
to improve the capabilities of this tool. It consists of three function blocks:

nbi — naive Bayes classifier induction
This function block receives as input a table of classified sample cases and induces
a naive Bayes classifier. The data types of the table columns (either symbolic or



numeric) can be stated in the unit fields of the table columns, which can also
be used to instruct the algorithm to ignore certain columns. Although tables
passed to user-defined functions blocks may not contain unknown values, this
function block provides, as the decision tree function blocks, a facility to specify
which table fields should be considered as unknown: in the configuration dialogue
you may enter a value for the lowest known value. All values below this value
are considered to be unknown. In addition, the configuration dialogue lets you
choose a simplification method and you can specify the Laplace correction to be
used (as a multiple of the standard value 1

n , where n is the number of tuples from
which the classifier is induced) and the name of a file into which the induced
naive Bayes classifier should be saved.

nbc — naive Bayes classification
This function block receives as input an induced naive Bayes classifier stored in
a file and a table of cases. It executes the naive Bayes classifier for each tuple
in the table and adds to it a new column containing the class predicted by the
classifier. The configuration dialogue lets you enter the name of the classification
column, the Laplace correction to be used (again as a multiple of the standard
value 1

n , where n is the number of tuples from which the classifier was induced),
and (just as described for the block above) a lowest known value. In addition
you can request an additional column into which a confidence value is written
for each classified tuple. This confidence value is the probability of the predicted
class as computed by the classifier.

xmat — compute a confusion matrix
This function blocks is identical to the one with the same name in the decision
tree plug-in, see section 3.3.

All function block dealing directly with naive Bayes classifiers (nbi and nbc) also
comprise a viewer which lets you inspect the constructed naive Bayes classifier
using the well-known MS Windows tree view control (used, for example, in the
MS Windows explorer to visualize the hierarchic file system). Hence you need
not accept the classifier as a black box (as is usually the case for, for example,
neural networks), but you can inspect what evidence it exploits to arrive at its
results.

5 Conclusions

None of the data analysis tools available today is perfect, but with some tools a
user has to be content with the capabilities supplied by the programmers, with-
out a chance of ever overcoming the restrictions and weaknesses of the shipped
version. Some, though very few tools, however, with DataEnginetm among them,
offer the possibility for user-specific extensions. In this paper we described how
we exploited the DataEnginetm interface for user-defined function blocks to im-
plement three plug-ins that overcome weaknesses of the original product and



extend its capabilities. The fact that two of the plug-ins have become commer-
cial products that are sold now by the makers of DataEnginetm as add-ons to
their basic tool shows that it can pay for a software company to produce open
and extensible systems, although it takes considerable effort to do so.
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