Skip to main content

System Description: TPS: A Theorem Proving System for Type Theory

  • Conference paper
Automated Deduction - CADE-17 (CADE 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1831))

Included in the following conference series:

Abstract

This is a brief update on the Tps automated theorem proving system for classical type theory, which was described in [3]. Manuals and information about obtaining Tps can be found at http://gtps.math.cmu.edu/tps.html.

In Section 2 we discuss some examples of theorems which Tps can now prove automatically, and in Section 3 we discuss an example which illustrates one of the many challenges of theorem proving in higher-order logic. We first provide a brief summary of the key features of Tps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P.B.: Theorem Proving via General Matings. Journal of the ACM 28, 193–214 (1981)

    Article  MATH  Google Scholar 

  2. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Academic Press, London (1986)

    MATH  Google Scholar 

  3. Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A Theorem Proving System for Classical Type Theory. Journal of Automated Reasoning 16, 321–353 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg, Braunschweig (1987)

    Google Scholar 

  5. Bishop, M.: A Breadth-First Strategy for Mating Search. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 359–373. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Bishop, M.: Mating Search Without Path Enumeration. PhD thesis, Department of Mathematical Sciences. Carnegie Mellon University (April 1999), Department of Mathematical Sciences Research Report No. 99-223, Available at http://gtps.math.cmu.edu/tps.html

  7. Bishop, M., Andrews, P.B.: Selectively Instantiating Definitions. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 365–380. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  9. Issar, S.: Path-Focused Duplication: A Search Procedure for General Matings. In: AAAI-90, vol. 1, pp. 221–226. AAAI Press, Menlo Park (1990)

    Google Scholar 

  10. Issar, S.: Operational Issues in Automated Theorem Proving Using Matings. PhD thesis. Carnegie Mellon University, 147 pff (1991)

    Google Scholar 

  11. Miller, D.A.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Paulson, L., Grabczewski, K.: Mechanising Set Theory: Cardinal Arithmetic and the Axiom of Choice. Journal of Automated Reasoning 17, 291–323 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pfenning, F.: Proof Transformations in Higher-Order Logic. PhD thesis. Carnegie Mellon University, 156 pff (1987)

    Google Scholar 

  14. Pfenning, F., Nesmith, D.: Presenting Intuitive Deductions via Symmetric Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 336–350. Springer, Heidelberg (1990)

    Google Scholar 

  15. Rubin, H., Rubin, J.E.: Equivalents of the Axiom of Choice, II. North- Holland, Amsterdam (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andrews, P.B., Bishop, M., Brown, C.E. (2000). System Description: TPS: A Theorem Proving System for Type Theory. In: McAllester, D. (eds) Automated Deduction - CADE-17. CADE 2000. Lecture Notes in Computer Science(), vol 1831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721959_11

Download citation

  • DOI: https://doi.org/10.1007/10721959_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67664-5

  • Online ISBN: 978-3-540-45101-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics