Abstract
FDPLL is a directly lifted version of the well-known Davis-Putnam-Logeman-Loveland (DPLL) procedure. While DPLL is based on a splitting rule for case analysis wrt. ground and complementary literals, FDPLL uses a lifted splitting rule, i.e. the case analysis is made wrt. non-ground and complementary literals now.
The motivation for this lifting is to bring together successful first-order techniques like unification and subsumption to the propositionally successful DPLL procedure.
At the heart of the method is a new technique to represent first-order interpretations, where a literal specifies truth values for all its ground instances, unless there is a more specific literal specifying opposite truth values. Based on this idea, the FDPLL calculus is developed and proven as strongly complete.
For a long version of the paper see http://www.uni-koblenz.de/fb4/publikationen/gelbereihe .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baumgartner, P.: Hyper Tableaux — The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, p. 60. Springer, Heidelberg (1998)
Beckert, B.: Integration und Uniformierung von Methoden des tableaubasierten Theorembeweisens. Dissertation, University of Karlsruhe (1998)
Bibel, W., Brüning, S., Otten, J., Schaub, T.: Compressions and Extensions. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction. A Basis for Applications, vol. 1, ch. 5, pp. 133–179. Kluwer Academic Publishers, Dordrecht (1998)
Baumgartner, P., Eisinger, N., Furbach, U.: A confluent connection calculus. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 329–343. Springer, Heidelberg (1999)
Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS (LNAI), vol. 1126, Springer, Heidelberg (1996)
Billon, J.-P.: The Disconnection Method. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS (LNAI), vol. 1071, pp. 110–126. Springer, Heidelberg (1996)
Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3sat. Artificial Intelligence 81 (1996)
Chang, C., Lee, R.: Symbolic logic and Mechanical Theorem Proving. Academic Press, London (1973)
Caferra, R., Peltier, N.: Decision Procedures using Model Building techniques. In: Computer Science logic (CSL 1995) (1995)
Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proceedings of Symposia in Applied Mathematics - Experimental Arithmetic, High Speed Computing and Mathematics, American Mathematical Society, vol. XV, pp. 15–30 (1963)
Davis, M., Logeman, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7) (1962)
Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7, 201–215 (1960)
Eder, E.: Properties of Substitutions and Unifications. Journal of Symbolic Computation 1(1) (March 1985)
Fermüller, C., Leitsch, A.: Model building by resolution. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 134–148. Springer, Heidelberg (1993)
Fermüller, C., Leitsch, A.: Hyperresolution and automated model building. Journal of Logic and Computation 6(2), 173–230 (1996)
Gottlob, G., Pichler, R.: Working with Arms: Complexity Results on Atomic Representations of Herbrand Models. In: Proceedings of the 14th Symposium on Logic in Computer Science, IEEE, Los Alamitos (1998)
Lee, S.-J., Plaisted, D.: Eliminating Duplicates with the Hyper-Linking Strategy. Journal of Automated Reasoning 9, 25–42 (1992)
Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)
Peltier, N.: Pruning the search space and extracting more models in tableaux. Logic Journal of the IGPL 7(2), 217–251 (1999)
Plaisted, D.A., Zhu, Y.: Ordered Semantic Hyper Linking. In: Proceedings AAAI 1997 (1997)
Sutcliffe, G., Suttner, C., Yemenis, T.: The TPTP problem library. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 192–206. Springer, Heidelberg (1994)
Zhang, H.: SATO: An Efficient Propositional Theorem Prover. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 272–275. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baumgartner, P. (2000). FDPLL — A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (eds) Automated Deduction - CADE-17. CADE 2000. Lecture Notes in Computer Science(), vol 1831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721959_16
Download citation
DOI: https://doi.org/10.1007/10721959_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67664-5
Online ISBN: 978-3-540-45101-3
eBook Packages: Springer Book Archive