Abstract
Let χ be a nontrivial Hecke character on a (strict) ray class group of a totally real number field L of discriminant \(d_{\textbf{L}}\). Then, L(0, χ) is an algebraic number of some cyclotomic number field. We develop an efficient technique for computing the exact values at s = 0 of such Abelian Hecke L-functions over totally real number fields L. Let f χ denote the norm of the finite part of the conductor of χ. Then, roughly speaking, we can compute L(0, χ in \(O((d_{\textbf{L}}f_{x})^{0.5+\epsilon})\) elementary operations. We then explain how the computation of relative class numbers of CM-fields boils down to the computation of exact values at s=0 of such Abelian Hecke L-functions over totally real number fields L. Finally, we give examples of relative class number computations for CM-fields of large degrees based on computations of L(0, χ) over totally real number fields of degree 2 and 6. This paper being an abridged version of [Lou4], the reader will find there all the details glossed over here.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cassou-Nogués, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math. 51, 29–59 (1979)
Coates, J., Sinnott, W.: Integrality properties of the values of partial zeta functions. Proc. London Math. Soc. 34, 365–384 (1977)
Fröhlich, A., Queyrut, J.: On the functional equation of the Artin L-function for characters of real representations. Invent. Math. 20, 125–138 (1973)
Fröhlich, A.: Artin-root numbers and normal integral bases for quaternion fields. Invent. Math. 17, 143–166 (1972)
Hida, H.: Elementary theory of L-functions and Eisenstein series. London Mathematical Society, Student Texts 26. Cambridge University Press (1993)
Lang, S.: Algebraic Number Theory, Grad. Texts Math., 2nd edn., vol. 110. Springer, Heidelberg (1994)
Lemmermeyer, F., Louboutin, S., Okazaki, R.: The class number one problem for some non-Abelian normal CM-fields of degree 24. Sem. Th. Nb. Bordeaux (to appear)
Louboutin, S., Okazaki, R., Olivier, M.: The class number one problem for some non-Abelian normal CM-fields. Trans. Amer. Math. Soc. 349, 3657–3678 (1997)
Louboutin, S.: Upper bounds on |L(1,\( \rm \mathcal{X}\))|and applications. Canad. Math. J. 4(50), 794–815 (1998)
Louboutin, S.: Computation of relative class numbers of CM-fields by using Hecke L-functions. Math. Comp. 69, 371–393 (2000)
Louboutin, S.: Formulae for some Artin root numbers. Tatra Mountains Math. Publ (to appear)
Louboutin, S.: Computation of L(1,X) and of relative class numbers of CM-fields. Nagoya Math. J (to appear)
Louboutin, S., Par, Y.-H., Chang, K.-Y., Kwon, S.-H.: The class number one problem for the non Abelian normal CM-fields of degree 2pq. (1999) (preprint)
Louboutin, S., Park, Y.-H., Lefeuvre, Y.: Construction of the real dihedral number fields of degree 2p Applications. Acta Arith. 89, 201–215 (1999)
Martinet, J.: Sur l’arithmétique des extensions à groupe de Galois diédral d’ordre 2p. Ann. Inst. Fourier (Grenoble) 19
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Louboutin, S. (2000). Fast Computation of Relative Class Numbers of CM-Fields. In: Bosma, W. (eds) Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722028_26
Download citation
DOI: https://doi.org/10.1007/10722028_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67695-9
Online ISBN: 978-3-540-44994-2
eBook Packages: Springer Book Archive