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Abstract. This paper presents a scalable method for parallel symbolic
reachability analysis on a distributed-memory environment of workstati-
ons. Our method makes use of an adaptive partitioning algorithm which
achieves high reduction of space requirements. The memory balance is
maintained by dynamically repartitioning the state space throughout
the computation. A compact BDD representation allows coordination
by shipping BDDs from one machine to another, where different variable
orders are allowed. The algorithm uses a distributed termination proto-
col with none of the memory modules preserving a complete image of the
set of reachable states. No external storage is used on the disk; rather,
we make use of the network which is much faster.

We implemented our method on a standard, loosely-connected environ-
ment of workstations, using a high-performance model checker. Our in-
itial performance evaluation using several large circuits shows that our
method can handle models that are too large to fit in the memory of
a single node. The efficiency of the partitioning algorithm is linear in
the number of workstations employed, with a 40-60% efficiency. A cor-
responding decrease of space requirements is measured throughout the
reachability analysis. Our results show that the relatively-slow network
does not become a bottleneck, and that computation time is kept rea-
sonably small.

1 Introduction

This paper presents a scalable parallel algorithm for reachability analysis that
can handle very large circuits.

Reachability analysis is known to be a key component, and a dominant one,
in model checking. In fact, for large classes of properties, model checking is
reducible to reachability analysis [3]; most safety properties can be converted into
state invariant properties (ones that do not contain any temporal operators) by
adding a small state machine (satellite) that keeps track of the temporal changes
from the original property. The model checking can be performed ”on-the-fly”
during reachability analysis. Thus, for safety properties verification is possible if
reachability analysis is, and an efficient method for model checking these kind
of properties is one where the memory bottleneck is the reachable state space.

There is constant work on finding algorithmic and data structure methods to
reduce the memory requirement bottlenecks that arise in reachability analysis.
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One of the main approaches to reducing memory requirements is symbolic model
checking. This approach uses Binary Decision Diagrams (BDDs) [4] to represent
the verified model. However, circuits of a few hundreds of state variables may
require many millions of BDD nodes, which often exceeds the computer memory
capacity.

There are several proposed solutions to deal with the large memory require-
ments by using parallel computation. Several papers suggest to replace the BDD
with parallelized data structure [II]1]. Stern and Dill [I0] show how to paralle-
lize an explicit model checker that does not use symbolic methods. Other papers
suggest to reduce the space requirements by partitioning the work to several
tasks [BI9J8]. However, these methods do not perform any parallel computation.
Rather, they use a single computer to sequentially handle one task at a time,
while the other tasks are kept in an external memory. Our work is similar, but
we have devised a method to parallelize the computation of the different tasks.
Section [flincludes a more detailed comparison with [5] and []].

Our method parallelizes symbolic reachability analysis on a network of pro-
cesses with disjoint memory, that communicate via message passing. The state
space on which the reachability analysis is performed, is partitioned into slices,
where each slice is owned by one process. The processes perform a standard
Breadth First Search (BFS) algorithm on their owned slices. However, the BF'S
algorithm used by a process can discover states that do not belong to the slice
that it owns (called non-owned states). When non-owned states are discovered,
they are sent to the process that owns them. As a result, a process only re-
quires memory for storing the reachable states it owns, and computing the set
of immediate successors for them. As can be seen by the experimental results
in Section [, communication is not the bottleneck. We can thus conclude that
usually, the number of non-owned states found by a process is small.

Computation on a single slice usually requires less memory than computation
on the whole set. Thus, this method enables the reachability analysis of bigger
models than those possible by regular non-parallel reachability analysis. Furt-
hermore, applying computation in parallel reduces execution time (in practice,
doing computation sequentially makes partitioning useless because of the large
execution time).

Effective slicing should significantly increase the size of the overall state space
that can be handled. This is not trivial since low memory requirements of BDDs
are based on sharing among their parts. Our slicing procedure is therefore desi-
gned to avoid as much redundancy as possible in the partitioned slices. This is
achieved by using adaptive cost function that for each partitioning chooses slices
with small redundancy, while making sure that the partition is not trivial. Ex-
perimental results show that our slicing procedure results in significantly better
slicing than those obtained by fixed cost functions (e.g. [Bi8]).

Memory balance is another important factor in making parallel computation
effective. Balance obtained by the initial slicing may be destroyed as more re-
achable states are found by each process. Therefore, balancing is dynamically
applied during the computation. Our memory balance procedure maintains ap-
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proximately equal memory requirement between the processes, during the entire
computation.

Our method requires passing BDDs between processes, both for sending non-
owned states to their owners and for balancing. For that, we developed a compact
and efficient BDD representation as a buffer of bytes. This representation enables
different variable orders in the sending and receiving processes.

We implemented our technique on a loosely-connected distributed environ-
ment of workstations, embedded it in a powerful model checker RuleBase [2],
and tested it by performing reachability analysis on a set of large benchmark
circuits. Compared to execution on a single machine with 512MB memory, the
parallel execution on 32 machines with 512MB memory uses much less space,
and reaches farther when the analysis eventually overflows. Our slicing algorithm
achieves linear memory reduction factor with 40-60% efficiency, which is main-
tained throughout the analysis by the memory balancing protocol. The timing
breakdown shows that the communication is not a bottleneck of our approach,
even using a relatively slow network.

The rest of the paper is organized as follows: Section [2] describes the main
algorithm. Section Bldiscusses the slicing procedure and Sectiondlsuggests several
possible optimizations. The way to communicate BDD functions is described in
Section Bl Experimental results prove the efficiency of our method in Section
Finally, Section [ concludes with comparison with related works.

2 Parallel Reachability Analysis

Computing the set of reachable states is usually done by applying a Breadth
First Search (BFS) starting from the set of initial states. In general, two sets of
nodes have to be maintained during the reachability analysis:

1. The set of nodes already reached, called reachable. This is the set of reach-
able states, discovered so far, which becomes the set of reachable state when
the exploration ends.

2. The set of reached but not yet developed nodes, called new.

The right-hand-side of Figure [ gives the pseudo-code of the BFS algorithm.

The parallel algorithm is composed of an initial sequential stage, and a par-
allel stage. In the sequential stage, the reachable states are computed on a single
node as long as memory requirements are below a certain threshold. When the
threshold is reached, the algorithm described in Section [3 slices the state space
into k slices. Then it initiates k processes. Each process is informed of the slice
it owns, and of the slices owned by each of the other processes. The process
receives its own slice and proceeds to compute the reachable states for that slice
in iterative BFS steps.

During a single step each process computes the set next of states that are
directly reached from the states in its new set. The next set contains owned
as well as non-owned states. Each process splits its next set according to the
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1 mySlice = receive(fromSingle); reachable = new = initialStates;
2 reachable = receive(fromSingle); while (new # ¢) {

3 new = receive(fromSingle); next = nextStatelmage(new);
4 while (Termination(new)==0) { new = next \ reachable;

5 next = nextStatelmage(new); reachable = reachable U next;

next = sendRecieveAll(next) }
next = next N mySlice

new = next \ reachable;

reachable = reachable U next;

}

© 0O

(a) BFS by one process (b) Sequential BFS

Fig. 1. Breadth First Search

k slices and sends the non-owned states to their corresponding owners. At the
same time, it receives states it owns from other processes.

The reachability analysis procedure for one process is presented on the left-
hand-side of Figure[Il. Lines 1-3 describe the setup stage: the process receives the
slice it owns, and the initial sets of states it needs to compute from. The rest of
the procedure is a repeated iterative computation until distributed termination
detection is reached. Notice that, the main difference between the two procedures
in Figure [ is the modification of the set next in lines 6-7 as the result of
communication with the other processes.

The parallel stage requires an extra process called the coordinator. This pro-
cess coordinates the communication between the processes, including exchange
of states, dynamic memory balance, and distributed termination detection. Ho-
wever, the information does not go through the coordinator and is exchanged
directly between the processes.

In order to exchange non-owned states, each process sends to the coordinator
the list of processes it needs to communicate with. The coordinator matches pairs
of processes and instructs them to communicate. The pairs exchange states in
parallel and then wait for the coordinator, that may match them with other
processes. Matching continues until all communication requests are fulfilled. A
process which ends its interaction may continue to the next step without waiting
for the rest of the processes to complete their interaction.

2.1 Balancing the Memory Requirement

One of the objectives of slicing is to distribute an equal memory requirement
amongst the nodes. Initial slicing of the state space is based on the known reach-
able set at the beginning of the parallel stage. This slicing may become inade-
quate as more states are discovered during reachability analysis. Therefore the
memory requirements of the processes are monitored at each step, and whene-
ver they become unbalanced, a balance procedure is executed. The coordinator
matches processes that have a large memory requirement with processes that
have a small one. Each pair re-slices the union of their two slices, resulting in a



24 T. Heyman et al.

better balanced slicing. The pair uses the same procedure that is used to slice
the whole state space (described in Section B]) with k¥ = 2. After the balance
procedure is completed, the pair informs the new slicing to the other processes.

2.2 Termination Detection

In the sequential algorithm, termination is detected when there are no more
undeveloped states i.e., new is empty. In the parallel algorithm, each process can
only detect when new is empty in its slice. However, a process may eventually
receive new states even if at some step its new set is temporarily empty.

The parallel termination detection procedure starts after the processes ex-
change all non-owned states. Each process reports to the coordinator whether its
new set is non-empty. If all the processes report an empty new set, the coordinator
concludes that termination has been reached and reports this to all the processes.

3 Boolean Function Slicing

Symbolic computation represents all the state sets, and the transition relation as
Boolean functions. This representation becomes large when the sets are big. To
reduce memory requirements we can partition a set into smaller subsets whose
union is the whole set. This partition, or slicing should have smaller memory
requirements. Furthermore, the subsets should be disjoint in order to avoid du-
plication of work when doing reachability analysis. Since sets are represented as
Boolean functions, slicing is defined for those functions.

Definition 1. [Boolean function slicing] [9] Given a Boolean function f : B™ —
B, and an integer k, a Boolean function slicing x(f, k) of f is a set of k function
pairs, X(f, k) ={(S1, f1),---,(Sk, fx)} that satisfy the following conditions:

1. S; and f; are Boolean functions, for 1 <i <k.
2. 5.VSyVv...v5, =1
3. SiNS; =0, fori#j

The S; functions define the slices of the state space and we refer to them as
slices.

Reducing memory requirements depends on the choice of the slices Sy, . . ., Sk.
Specifically, when representing functions as BDDs, the memory requirement of
a function f, denoted |f]|, is defined as the number of BDD nodes of f. Thus
slicing a function f into two functions f; and fo may not necessarily reduce the
requirements. BDDs are compressed decision trees where pointers are joined if
they refer to the same subtree (see Figure 2] for a BDD example). This causes
significant sharing of nodes in the Boolean function (for example node 4 in
Figure ). As a result of this sharing, a poor choice of Si,S2 may result in
|f1l = | £, and also | f2] ~ | f].
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Finding a good set of slices is a difficult problem. A possible heuristic ap-
proach to solving this problem is to find a slicing that minimizes |f1],...,]|f%|.
However as the results of our experiments in Section [Blshow, a better approach is
to find a slicing that additionally minimizes the sharing of BDD nodes amongst
the k£ functions fi,..., fx.

3.1 Slicing a Function in Two: SelectVar

Our slicing algorithm, SelectVar, slices a Boolean function (a BDD) into two,
using assignment of a BDD variable. The algorithm receives a BDD f, and a
threshold 6. It selects one of the BDD variables v and slices f into f, = f A v,
and fz = f Av. Figure 2lshows an example of such a slicing where the function
f is sliced using variable v; into f; and fs.

The cost of such a slicing is defined as:

Definition 2. [Cost(f,v,a):] a 7MAX(|IJ{‘“"“%D +(1—a)* ‘f”l‘—;“fﬂ

The %’W factor gives an approximate measure to the reduction achieved

by the partition. The % factor gives an approximate measure of the amount

of sharing of BDD nodes between f, and f7 (e.g., node 4 in Figure [2), and
therefore reflects the redundancy in the partition.

Fig. 2. slicing f into f1 and f>

The cost function depends on a choice of 0 < a < 1. An @ = 0 means that the
cost function completely ignores the reduction factor, while a = 1 means that
the cost function completely ignores the redundancy factor. Our algorithm uses
a novel approach in which « is adaptive and its value changes in each application
of the slicing algorithm, so that the following goals are achieved: (1) the size of
each slice is below the given threshold 4, and (2) redundancy is kept as small as
possible.

Initially, the algorithm attempts to find a BDD variable which only mini-
mizes the redundancy factor (o = 0), while reducing the memory requirements
below the threshold (i.e., max(|fi],|f2|) < |f| — d). If such a slicing does not
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exist the algorithm increases « (i.e., allows more redundancy) gradually until
max(|f1],]f2]) < |f] — ¢ is achieved.

The threshold is used to guarantee that the partition is not trivial, i.e., it is
not the case that |fi1] = |f| and |f2| ~ 0. If the largest slice is approximately
|f| — ¢ and the redundancy is small, it is very likely that the other slice is
approximately of size 4.

The pseudo code for the algorithm SelectVar(f,d), is given in Figure[3 We
set STEP = min(0.1, ;) and § = |—£l, where k is the number of overall slices we
want to achieve.

o = Aa = STEP
BestVar = the variable with minimal cost(f,v, )
while ((max(|f Avl|,|fAD])>|f] =) A(a<=1))
a=oa+ Axa
BestVar = the variable with minimal cost(f,v, )
return BestVar

Fig. 3. The pseudo code for the algorithm SelectVar(f,J).

Note that, even though our algorithm may compute the cost functions for
many different «, |f A v| and |f A D] are computed only once for each variable
v, therefore, computation time is not increased. Furthermore, the computation
of |f ANwv| and |f A ©| for different variables, v, is done in parallel. Different
computers compute the values for the different variables. The values are then
sent to a computer that determines the variable with the minimal cost.

Instead of gradually increasing «, it is possible to find the best a by binary
search. For a model with a large number of BDD variables, and large k, this
improvement is essential in making our method efficient.

Our slicing procedure is different from those of [0]5] in that we use adaptive «,
and put a lot of emphasis on obtaining small redundancy. Since cost functions
are computed in parallel, we can allow computing them more precisely, thus
achieving better fine-tuning of our slicing. The comparison to fixed « as suggested
in [95] is given in Figure[d

3.2 Slicing a Function into k Slices

Recall that SelectVar may result in two unbalanced slices that are approxima-
tely of sizes |f| — 6 and 6. When we aim at a partition of & slices, we therefore

use 6 = % and repeatedly slice the largest slice, until k slices are obtained. In
this way we obtain a balanced partition.

4 Optimizing the SelectVar Procedure

SelectVar(f,0) selects a state variable v and uses it to split a set f into two
sets: fAv and fAD. Recall that the algorithm attempts to satisfy two conditions;
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circuit/method 16 slices | 32 slices | 65 slices | 130 slices
mem | red [mem|red [mem|red [mem]|red
prolog, 4th step, reachable size is 199,961 BDD nodes

a=1 8.33[1.38|14.75(1.65|23.26{2.09|37.79(2.69
fixed « 8.33|1.38|14.98(1.65|23.26|2.09(37.76|2.60
adaptive « 10.23|1.34]16.82|1.44|28.54|1.84|43.23|2.34

adaptive o + optimizations| 9.89(1.22|16.66|1.44|30.01|1.66|48.87|2.04
1269, 3rd step, reachable size is 100,170 BDD nodes

a=1 12.75|1.05|22.45|1.21{36.84/|1.42|60.75|1.74
fixed 12.75(1.04|22.33|1.19|36.16|1.38|61.47|1.66
adaptive « 12.75(1.04|21.40|1.20|36.04|1.38|62.53|1.62

adaptive a + optimizations|12.75(1.02|22.33|1.18|38.53|1.27|70.42|1.41
$3330, 4th step, reachable size is 233,952 BDD nodes

a=1 6.18(2.17| 9.23|2.86|13.46{3.93|19.83|5.35
fixed 6.18|2.15| 9.11|2.82|13.46|3.83|19.83|5.20
adaptive a 6.02(2.16| 8.92(2.82|14.00(3.68(19.94(4.72

adaptive o + optimizations| 6.17|1.92| 9.81|2.40({19.81|3.16|24.16|4.16
s1423, 10th step, reachable size is 175,631 BDD nodes

a=1 9.87|1.24|16.65|1.37|30.51|1.51|54.59|1.74
fixed « 9.87(1.24|16.65(1.34|31.97(1.47|55.60(1.69
adaptive « 10.64(1.13{19.21]1.21|35.88|1.36|64.76|1.50

adaptive a + optimizations|11.60{1.10{18.24|1.18|38.36|1.23|70.68|1.35
s5378, 7th step, reachable size is 177,105 BDD nodes

a=1 5.37|2.13| 8.96|2.72(13.83|3.43|22.84|4.39
fixed « 5.88/1.95| 8.96|2.72|13.83|3.43|25.29|3.84
adaptive « 7.71]1.74]11.81|2.04|19.43|2.63|28.46|3.58

adaptive a + optimizations| 8.63|1.56(12.14|2.03|19.94/|2.51|30.70|3.26
BIQ, 14th step, reachable size is 203,019 BDD nodes

a=1 8.06|1.48(13.33|1.67|24.43|1.93|41.12|2.26
fixed 8.54|1.44|13.60|1.60|26.87|1.86|43.35|2.15
adaptive a 8.54(1.37|16.33|1.50{29.36{1.69|50.00{1.97

adaptive o + optimizations| 8.79(1.27|20.11|1.21|37.65|1.24|65.50|1.38
ARB, 5th step, reachable size is 177,105 BDD nodes

a=1 10.43|1.35|17.15]|1.50|28.78|1.72|48.46|1.97
fixed « 9.99(1.31{16.15{1.45|28.77(1.63|51.76{1.83
adaptive « 10.03|1.28{17.46|1.34|32.61|1.46|58.31|1.66

adaptive a + optimizations|10.72|1.08|19.64|1.17|37.03|1.26/71.21{1.27

Fig. 4. Partitioning results measured by two parameters: the redundancy (red) which
is the ratio between the overall size of the slices and the original reachable size, and
the memory reduction (mem), which is the ratio between the original reachable size
and the largest slice in the partition.



28 T. Heyman et al.

that the size of both resulting sets is at most |f| — ¢, and that the redundancy
is minimized.

The efficiency of this algorithm and its success in meeting the conditions
are crucial factors in the efficiency of the whole scheme, especially when the
number of processes increases. In this section we observe that the algorithm can
be improved in several ways.

The main observation in improving the slicing procedure is that the split of
f which meets best the conditions might not be achieved using a single variable.
Indeed, it was previously suggested that the algorithm can achieve better results
by the choice of a general function g which determines two sets: f A g and f A g
[9]. However, since there is an exponential number of candidates for g, trying
them all will take too much time. In the rest of this section we develop heuristics
which help to choose a “good” g while keeping a reasonable complexity for the
choice.

We construct g iteratively as follows. Suppose at a certain step we already
have ¢’. We now choose a state variable v and compute the cost Cost(f, «, g) of
all the functions of the form g = ¢’ op v. We use the following options: ¢’ A v,
g ANv, ¢ v, ¢ AT, ¢ Vv. Thus, the complexity of computing the cost of all
the possibilities at a certain iteration, assuming that we try all state variables,
can be as high as five times the number of states variables times the cost of a
BDD operation.

In what follows we describe the ways to use the above observation. These are
a set of heuristics that we found to be effective (see Table ). There are several
configurable parameters which appear in the description of the heuristics, and
which we currently set in our implementation using a trial-and-error methods.

Optimization 1. The general construction of a splitting function g, as de-
scribed above is called by SelectVar(f,d) when a splitting variable BestVar
which satisfies the conditions is found, we call ImprovingSplit which applies
the construction with BestVar as a base function, in an attempt to further im-
prove the cost.

Optimization 2. We choose a small number [ of the best variables found so
far and send them as inputs to the general construction of the splitting function.
This time, we use each variable only once: we start with the best one, add the
second best, etc. If any of the [ — 1 resulting functions meet the conditions — we
are done. Else, if the functions are different than those found at the end of the
previous iteration of SelectVar, they are added to the existing list of variables.
This increases the input to the next iteration of SelectVar by [ — 1 functions
which have high potential of becoming good slicers.

Optimization 3 (Only very small a.) We choose the best splitting varia-
ble so far, and iteratively add more variables according to the general construc-
tion of the slicing function. However, this time we first select those variables for
which the resulting function strictly decreases the size of the slices. Only then,
out of those variables selected, we choose the one for which the slicing function
achieves a minimal cost.
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5 Efficient Transfer of BDDs

As described in Section 2 processes periodically exchange BDDs during reach-
ability analysis. Two utility functions are used. bdd2msg translates a BDD into
a more compact msg data and msg2bdd translates the msg data back to a BDD
after it has been transferred. The purpose of bdd2msg is to serialize the BDD
structure in order for it to be suitable for raw buffer transfer.

BDD nodes represent a boolean function f recursively. The functions 0 and
1 are represented by special BDDs called ZERO, and ONE respectively. Other
functions are represented by a node that contains variable identification x, and
two pointers, leftPtr and rightPtr, that point to two other BDD nodes that
representing fz and f,, respectively. The function f is expressed based on the
Shannon expansion: T fz + x f;.

The msg data is a sequence of records. Each msg record has four fields: An
index for that record (symbolic pointer), denoted as Sid. The variable id of the
record denoted as Xid. An Sid for the record left son, and an Sid for its right
son. The index field indicates the record location in the msg data. The records
ZERQO, and ONE have special index.

bdd2msg traverses the nodes of BDD f in Depth First Search (DFS) order.
It creates the corresponding msg records from the leaves upwards. Every time
it creates a new msg record, it increments an index, which serves as the Sid for
that record. msg2bdd traverses the msg records sequentially from start to end.
It creates the corresponding BDD nodes one by one as it traverses the data.
Shannon expansion is used to create the BDD node from the record. Such trans-
formation is possible due to the fact that the Xids remain constant throughout
the computation.

Remark: The transferred BDD f is compressed by the restrict operator
described in [6], using the slice of the receiving process as the restricting domain.

6 Experimental Results

In this section we report initial performance results of using our approach. We
implemented our partitioned BDD and embedded it in an enhanced version of
McMillan’s SMV [7], due to IBM Haifa Research Laboratory [2].

Our parallel testbed includes 32 RS6000 machines, each consisting of a
225MHz PowerPC processor and 512MB memory. The communication between
the nodes consists of a 16Mbit/second token ring. The nodes are non-dedicated;
i.e., they are mostly workstations of employees who would often use them (and
the network) at the same time that we ran our experiments.

We experimented using five of the largest circuits we found in the benchmarks
ISCAS89 +addendum’93. We also used two large examples (BIQ and ARB)
which are components in the IBM’s Gigahertz processor. Characteristics of the
seven circuits are given in Figure Bl
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Circuit|# |max reachable| max new peak fixed point | gc

vars| size | step | size [step| size [step| time | steps | time
prolog | 117| 402k 5 578k| 5| 1,283k| 6] 1,288] 9 113
s1269 | 55| 98k 3| 128k| 3| 3,055k| 5| 1,371 10 175
s3330 | 172 839k 6|2,107k| 6| 4,250k| 717,777 9 606
s5378 | 198] 524k 25| 157k| 35| 4,058k| 19(98,209| 44 (6,206
s1423 | 91|3,831k 13|3,691k| 13|11,413k| 14| 4,079|ov(14)| 420
BIQ 187|1,744k 22|1,589k| 22| 8,954k| 23|35,495|0v(23)|5,512
ARB |116|1,193k 6(1,183k| 6| 8,893k| 7| 3,112|ov( 7)| 473

Fig. 5. Characteristics of our benchmark suit, taken from ISCAS89+addendum’93, and the IBM’s
Gigahertz processor. All sizes are given in BDD nodes, and all times in seconds. Max reachable is
the maximal (over the steps) set of nodes already reached. Max new is the maximal (over the steps)
set of nodes reached but not yet developed. Note that new may be larger than reachable (at any
step), since the joint BDD representation of the current-step’ new and the previous-step’ reachable
may reduce in size. The peak is the maximal size at any point during a step. In order to mask the
effect of garbage collection (gc) scheduling decisions, the peak is measured after every gc invocation.
Fixed point is the number of steps/time it takes to get to fixed point. Ov(z) means memory overflow
at step x. The time was measured using an RS6000 machine, consisting of a 225MHz PowerPC
processor with 512MB memory.

6.1 Slicing Results

The success of our slicing algorithm is a crucial factor in the efficiency of the
parallel execution. This success is indicated by two parameters of the obtained
partition: the redundancy, which is the ratio between the overall size of the
slices and the original reachable size, and the memory reduction, which is the
ratio between the original reachable size and the largest slice in the partition.

Figureld presents the slicing results of reachable sets for four slicing methods.
In order to show phenomena which appear only towards large number of slices,
results in Figure[d are given for 16, 32, 64, and 130 slices. The slicing algorithms
are invoked when the size of the reachable set exceeds the threshold 100,000
BDD nodes.

The first method selects as a slicing function the variable which achieves the
biggest memory reduction. In algorithm SelectVar this corresponds to choosing
a = 1. The second method is the same as that used in Cabodi et. al. [5]. This
corresponds to choosing the splitting variable with the best fixed «. The third
method is the one presented in Section[3], adapting « to select the partition with
minimal redundancy. The fourth method includes the optimizations described
in Section [l so that splitting is carried using a general function.

The table shows that the average increase in the memory reduction which can
be attributed to our optimizations (adapting o and choosing a general splitting
function), is 25%, 22%, 18%, and 10% for slicing into 130, 65, 32, and 16 parts,
respectively. We conclude that these optimizations become more important as
the level of slicing increases. This proves that the key to better slicing when
the number of slices increases is to opt for lower duplication, which is the base
orientation for our optimizations.

The average memory reduction factor achieved over our benchmark suit for
slicing into 130 slices, is more than 55. We expect the results to improve for
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high slicing levels when a larger threshold is chosen. The reason for that is the
threshold per slice, in our experiments 100,000/130 = 750 which may be too
small. On the other hand, efficiency dictates earlier split when the bottleneck is
the complexity of the slicing algorithm, or the resources required by the initial
sequential stage.

6.2 Parallel Reachability — Space Reduction

We now present the results for reachability analysis of the benchmark suit using
our 32 machine testbed. Figures @ to 2] summarize the memory usage, giving
the reachable size and peak usage for every step. Each of the graphs compares
the memory usage in the single-machine execution to that of the parallel system.
For the parallel system we give both average and highest memory utilization in
any of the machines.
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Fig. 6. Memory utilizations during reachability analysis of prolog.

The graphs show that scalability is obtained due to the performance of the
slicing algorithm, which achieves a good memory reduction. The circuits which
overflow always reach with the parallel execution to a farther step than when
using the single-machine. Figure [[1] shows the analysis process for circuit BIQ
which safely reaches step 32 with the parallel execution. BIQ reaches only step
22 with the single machine execution.

One of the crucial factors in the success of the parallel reachability scheme is
the dynamic memory balancing, which is in charge of maintaining the “accom-
plishments” of the slicing algorithm. The ratio of worst to average space usage
in the graphs indicates that our dynamic load balancing algorithm succeeds to
avoid extreme imbalance.

Note that the measures on peak size are subject to the gc scheduling policy,
thus the phenomena appearing e.g., in Figure [[] where the reachable set shrinks
while the peak remains very high.
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6.3 Parallel Reachability — Timing and Communication

Figure gives the timing breakdown for reachability analysis on the bench-
mark suit. This table provides information regarding the ratio of computation
(compute) to communication (exchange) and memory balancing (balance) in
our scheme. The table shows that the overall picture is fairly balanced. In other
words, the table shows that communication is not a bottleneck in our algorithm,
despite the fact that we use a relatively slow network.

7 Comments on Related Work

In this section we discuss the improvements of our algorithm over the reachability
analysis algorithms presented in [58]. Their algorithms slice the computation,
but do not parallelize it. We also summarize the special consideration needed by
parallel implementation.

The slicing suggested in [5] is more general than that in [8]. However, as
shown in Section [6] above, its effectiveness is limited to a small number of slices.
The adaptive a and the general slicing functions used by our algorithm proved
scalability and worked well even with 130 slices. Experimental results show that
the the impact of our optimizations increases with the level of slicing.

Balancing the memory requirements among slices during computation increa-
ses the overall reduction. The algorithm in [8] does not include any balancing.
The balancing suggested by [5] constantly increases the number of slices. Our ba-
lancing method keeps the number of slices fixed, while successfully maintaining
the work balanced. This is important when the network size is fixed.

At the end of each step, [5] and [§] write to the disk the sets reachable and
new, obtained for the slice under consideration. Rather, we send on the network
(which is much faster) only the non-owned part of new, which is relatively small.

In [8] the authors comment that they believe their algorithm can be paralle-
lized. This, however, is not immediate. In order to exploit the full power of the
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Fig. 7. Memory utilizations during reachability analysis of s1269.
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(a) Size of reachable states set
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Fig. 8 Memory utilizations during reachability analysis of s3330.
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Fig. 9. Memory utilizations during reachability analysis of s1423.
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Fig. 10. Memory utilizations during reachability analysis of s5378.
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(a) Size of reachable states set
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Fig.11. Memory utilizations during reachability analysis of BIQ.
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Fig. 12. Memory utilizations during reachability analysis of ARB.

Circuit| steps | seq. [slicing| total |compute| exchange |balance| gc
stage parallel non-owned
prolog 9| 47| 3,289 1,282 478 544 421| 371
s1269 10| 312| 1,091 167 101 46 0| 119
$3330 9| 28| 1,218 9,765 8,113 1,907 646 619
sh378 44| 345| 1,203| 17,224 9,247 2034| 5,489(1,698
s1423 [(12)14| 155/ 820 5,541 678 186 4,192| 681
BIQ [(22)32| 50| 389| 78,515 35,717 4,458| 30,881/9,262
ARB (6)7] 26| 361 5,137 1,644 231| 2,746 515

Fig. 13. Timing data (seconds) for parallel execution on 32x512MB machines. Each of the mea-
sures is the worst sample over all the machines. The steps count shows that in the case of overflow
we got farther from where the 512MB single-machine experiment gave up (given in brackets). The
sequential stage shows the time it took to get to the threshold where slicing is invoked. The total
parallel is the total time over all steps, including computing, exchanging non-owned states, memory
balancing, and garbage collection time. Note that the total time is the maxima over sums and not
the sum over maxima. Note that communication time is counted only in the exchanging non-owned

and balancing columns.
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parallel machinery, we had to adapt the BFS for asynchronous computation, we
coordinated and minimized communications, avoided unnecessary blocking, and
employed a distributed termination detection.

Our system uses a powerful model checker, which shows that our scheme in-
tegrates nicely with state of the art tools. As a result, we were able to experiment
with very large circuits, reaching farther steps. For instance, [5] report overflow
in step 4 of s5378, while our system reached fixed point at step 44.
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