
HAL Id: hal-02458242
https://hal.science/hal-02458242

Submitted on 28 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cost-Bounded Algorithm to Control Events
Generalization

Gaël De Chalendar, Brigitte Grau, Olivier Ferret

To cite this version:
Gaël De Chalendar, Brigitte Grau, Olivier Ferret. A Cost-Bounded Algorithm to Control Events
Generalization. Conceptual Structures: Logical, Linguistic, and Computational Issues, 8th Interna-
tional Conference on Conceptual Structures, ICCS 2000, 2000, Darmstadt, Germany. pp.555–568.
�hal-02458242�

https://hal.science/hal-02458242
https://hal.archives-ouvertes.fr

A Cost-bounded Algorithm to Control Events

Generalization

Gaël de Chalendar, Brigitte Grau, Olivier Ferret

LIMSI-CNRS

BP 133, 91403 Orsay, France
email: (gael, grau, ferret)@limsi.fr

Abstract. In order to build descriptions of prototypical situations, we first
developed a system, MLK (Memorization for Learning Knowledge), allowing
us to gather events related to similar situations starting from descriptions found
in texts, these events being represented by conceptual graphs. One of the stages
to build these prototypes consists of generalizing some similar graphs in order
to produce a description. In this paper, we present a cost bounded algorithm of
conceptual graph generalization, proceeding by ascending clustering. The use
of costs on the operations of generalization allows us to control the growth of
the search space.

1. Introduction

Text understanding requires knowledge about concrete situations that are developed
in order to recognize links between the different events. Such knowledge is often
represented by schemas whose content describes characters and events involved in a
situation. However handcoding schemas is a very difficult task, even on a limited
domain. Automatic acquisition of situation descriptions has been [1], [2] and [3], but
essentially to learn new specialized situations of predefined ones. Inside a framework
that does not make any hypothesis on the existence of general knowledge, we have
first conceived the system MLK (Memorization for Learning Knowledge) [4], [5],
able to learn from the accumulation of its own experience. MLK memorizes each
specific situation found in texts by aggregating it with an already memorized
description if a similarity between their events is recognized. This process leads to
incrementally build aggregated Thematic Units (TU) that are precursors of general
schemas. Each event inside a TU is represented by a weighted conceptual graph (CG)
[6]. In order to build a general description of a situation from a TU, we have studied
how to generalize these events, i.e. conceptual graphs, to find a description level
accounting for different formulations of a same event. This kind of problem is
dependant on ascending clustering methods from positive examples. Generalization
algorithms of conceptual graphs have already been proposed [7], [8], but they only
generalize concepts, and not the graph itself. Generalizing both concepts and graphs
entail a combinatory explosion when searching for all the possibilities. Therefore, we
have developed a cost-bounded generalization algorithm that limits the search space
and leads us to propose informative generalizations. A cost is associated with each
generalization operator, and we take advantage of semantic knowledge to produce
meaningful descriptions of events.

2. System Overview

The system input is made of a set of conceptual graphs describing events related to a
situation of the same kind, for example to come in a house, to attack a woman, to stab
a man with a knife, to arrest the murderer, etc. In order to elaborate a description of
the situation from these events, a main stage is to find a right level of description
leading to generalize those specific graphs describing a same kind of event. In the
preceding example, it would consist of proposing a description where the woman
attack and the man stabbing are generalized, whereas the two other events are left as
it. Then the problem can be formulated as follows: given a set of conceptual graphs,
find among them those that can be generalized while keeping an informative
description level. Our purpose is not to find the common generalization of all the
events, but a description level keeping the specificity of the kinds of events
represented by the graphs. Coming back to the example, our goal is not to generalize
the four events in a single one that would be to carry out an action.
The method we propose consists of developing a sub-set of the possible

generalizations of each graph, by generalizing concepts and removing relations.

Generalization is controlled by the use of semantic knowledge: a lattice of concept

types and constraints on the arguments related to some concepts, given by canonical

graphs. It avoids overgeneralizations that would not have any meaning. Developing

all the generalizations of a graph is unconceivable, even if limiting them by

comparison with domain knowledge. Therefore, in order to limit the size of the

generalization space, a cost is associated to the generalization operators, allowing the

system to associate a cost to each graph produced and to limit their formation by

fixing a threshold. Costs are defined according to the task and encode the

generalization level that is searched. All the generalizations are organized in

configurations allowing the system to know which initial graphs are generalized.

These configurations represent the different possibilities to describe the initial

situation. The choice of one of them is done according to the number of initial graphs

that are generalized and to the cost of the different configurations. Thus, the

description level that is built is constrained both by the semantic knowledge and by

the costs associated to the generalized graphs. This method allows us to bypass the

difficulty coming from the impossibility to define negative examples in our task and

then to use classical learning algorithms.

3. Conceptual Graphs

Semantic knowledge is represented in a lattice of types of concept and by canonical
graphs associated to some types in order to precise their thematic roles (i.e. relations),
as agent, object, etc., and semantic constraints on concepts that might fill them (see
Fig. 1). We do not follow the Conceptual Graphs standard draft NCITS.T2/98-003.
The "syntactic" knowledge held by star graphs is coded by our canonical graphs.
Conceptual graphs that represent events (see Fig. 2) are obtained by application of
formation rules to one or several canonical graphs, as described in Sowa [6]. So, these
graphs are built with respect to the constraints defined in the knowledge base. A graph
resulting from the application of these rules is a specialization of one (or several)
initial graph(s). In Fig. 2, the graph results from a maximal joint between two graphs

produced after restrictions on types of concept in the canonical graphs associated to
stab and body. See [9] for a detailed presentation of the formation rules and their
relation with subsumption. The class of CGs we consider is the class of simple CGs
derived from canonical graphs, with n-ary relations and with a distinguished concept
node explained below.

[Stab]- [Stab]-

(agent) → [Human] (agent) → [Man]

(dest.) → [Body] (dest.) → [Body] -

(instrument) → [CuttingEdge] (partOf) → [Man]

 (instrument) → [Knife]

Fig. 1. A canonical graph Fig. 2. An event

As our graphs represent events, we distinguish a concept that is significant for the

event type, named predicate (Stab in Fig. 2), this concept playing a particular role

inside our application. Other kinds of concept result from abstractions done during the

aggregation process in MLK. They already generalize instances linked to a same

predicate that are found in texts. See [4] and [5] to find details about the process that

build these graphs.

4. Graphs Generalization

4.1 Method

Some graphs belonging to the initial set may contain different predicates while

being very similar, as in Fig. 3. If graphs are identical except for their predicate, and if

these predicates are semantically close, these graphs have to be replaced by a graph

that generalize them. The same principle applies if the graphs only differ by some

details in the predicate arguments. The problem is then to find the least common

generalization of several graphs, given one does not a priori know which graphs in

the initial set have to be generalized.

Explode ShopLocSourceBurstBomb Source Bomb

Fig. 3. Similar conceptual graphs with different structures and concepts

Such a problem is similar to conceptual clustering, with conceptual graphs as the
description language of the concepts to be learned [10]. Initial conceptual graphs are
equivalent to first order logic formulas, made of a conjunction of positive predicates,
the concepts and the relations of the graphs. This problem is close to the work of
Mineau and Bournaud. Even if we do not search for a classification, which is the
problem they have to solve, the generalization space has also to be generated in order
to choose the generalization level we want to reach. In their work, a graph is
represented by the set of its relations to avoid comparison of graphs, that is a NP-
complete problem. However, this approach cannot be applied in our application given
that the structure of the graphs may be modified during the generalization process
when removing relations. We have to reason on graphs themselves in order to keep

specific links between a predicate and its arguments, i.e. to maintain their
connectedness. It is then impossible to generate meaningful generalizations in a
limited time without controlling the growth of the generalization space. The process
we propose is a cost-bounded algorithm that associates a cost to each generalization
operator and uses domain knowledge to avoid overgeneralizations. This algorithm has
been conceived without taking into account the specificity of our application other
than the presence of a central concept in conceptual graphs. So we consider that types
of relations are organized in a lattice, even if our knowledge representation does not
use this possibility.

We have defined three primitive generalization operators:

1. concept generalization: replacing a type of concept by its supertype in the lattice,

2. relation generalization: replacing a type of relation by its supertype in the lattice,

3. relation removing: removing a relation in the graph, and some associated concepts.

We have not defined an operator for removing concepts because removing a
concept entails the removal of all the relations it is linked to. If we come back to the
example in Fig. 3, removing the concept Shop leads to remove the relation Loc, and
conversely removing the relation Loc leads to remove the concept Shop in order to
keep a connected graph (in such a case, we keep the connected component that
contains the predicate). Removing relations is then sufficient since removing concepts
is strictly included in the results of the removal of relations, which may entail the
removal of several concepts and relations.

These operators create a partial order between the resulting graphs, as defined in
[6] and [9]. Precisely, the subsumption relation defined for conceptual graphs is the
relation induced by the existence of a projection between two graphs [11].

We associate a cost to each operator since we dispose neither a domain theory
(general knowledge about situations for example), nor a characterization of the pieces
of knowledge we want to learn that would give us a formal proof of the quality of the
generalization. We use an empirical evaluation based on semantics and the estimation
of the loss of information when generalizing.

In order to find this cost, we have reasoned on the effect of each operation in terms
of loss of information it entails. In our context, the cost of each operator is related to
the concept it applies to: predicate or not, concept derived from the canonical graph of
the predicate or not. When generalizing a concept that is not derived from the
canonical graph of the predicate, named common concept, the generalization is made
on characteristics that are peripheral to the event. Removing relations, that, as already
said, causes the removal of concepts, entails the suppression of some of these
characteristics. As a matter of fact other concepts cannot be removed, as one cannot
remove relations belonging to the canonical graph of the predicate without losing the
meaning of the graph (the canonicity of the resulting graph is no more verified).
Lastly, the operation we consider as very costly is the generalization of the predicate,
since, as we have seen in part 2, we want to avoid many generalizations of the
predicates in order to keep kinds of events specific to the described situation. So the
least common generalization is a graph achieved by preferentially generalizing
concepts other than the predicates.

We have defined the following order of the costs of the operators, this ordering
characterizing the loss of information:

generalization of a common concept ≤ generalization of a concept derived
from the canonical graph ≤ removal of a relation ≤ generalization of the
predicate

The relative order is more significant than absolute values that defines costs. The
value given to each operator is connected to the threshold that is fixed to compute
generalizations for a given application, the number of operations it is likely to realize,
and the importance of each operation in relation to the others. These values have to be
fixed experimentally according to the application.

Let us now present some specificity due to the conceptual graph formalism and our
application. Firstly, it is not possible to suppress the predicate, since the resulting
graph(s) would no longer refer to the described event. Secondly, if two non-connected
graphs result from a suppression, we only keep the graph containing the predicate.
Thirdly, a concept is never generalized in a concept more general than the one in the
canonical graph. And last, when generalizing a predicate, a verification is done using
the new canonical graph to ensure the canonicity of the resulting graph. A
consequence of having this distinguished concept is that the complexity of the
operations on CGs is reduced due to less possible matching between two graphs. But
that does not reduce a lot the size of the effectively searched space.

4.2 The Generalization Algorithm

One stage of the algorithm consists in building the generalization space which
contains, at the beginning, the conceptual graphs to be generalized, i. e. the root
nodes. During the processing, each node resulting from a generalization is inserted in
this space only if it does not already exist. A node of depth n is the result of n
generalizations of a root node. For example, a conceptual graph that contains 3
concepts and 2 relations may be processed by applying 5 generalizations of concept or
relation and 2 removal of relation. It would generate, at most, 7 new nodes. The cost
associated to each node, related to the path towards the root node, is equal to the cost
of its father plus the cost of the operation which has given it birth. The cost of a root
node is zero. Applying such an algorithm until a common generalization is found, if it
exists, is exponential in the general case. Bounding the set of the possible
generalizations by fixing a maximal cost on the nodes entails a quite reasonable
practical complexity (this latter point will be detailed in the following section) and all
the generalizations having a cost less than this threshold are computed.

Fig. 4 shows an example where three conceptual graphs (the root nodes x1, x2 and

x3) have been generalized in the graphs (a, b, c, d), (c, b, e) and (e, f, g, d)

respectively. Values on the branches are the costs of the applied operators.

Costs which stop the generalization process, more than maintaining the semantics

of the graphs, yield the possibility to control the growth of the generalization space. In

order to improve more effectively the performance of the algorithm, we have

implemented some principles. For example, if the cost to find a supertype common to

the predicate of a graph and the predicates of each other graph of the initial set

oversteps the given threshold, this graph is removed from the initial set. By using this

principle, the algorithm applies on graphs that may be a generalization of two root

graphs, and not on the very initial graphs, given they all contain a different predicate

(see Initialization part of the algorithm in Fig. 6). On another hand, graphs are

indexed by their predicate and their number of relations and concepts, such as

comparison of graphs is only done if these characteristics are identical.

x1 x2 x3

a

b d

e gf
c

21 1
1

1
1

1

3

4

2
3

Fig. 4. A generalization space built from 3 root graphs

The aim of the algorithm is to generate all the possible descriptions of the initial

set, the set of configurations. A configuration is a set of conceptual graphs,

generalized or not, that represents a partition of the initial examples, the root graphs.

After application of the algorithm, only the graphs that generalize several root graphs

with the root graphs themselves are kept. Other nodes, that just generalize a unique

initial conceptual graph, are useless for our purpose (for the example in Fig. 4,

retained nodes appear in the first column in Fig. 5). The generalization cost of a node

is the average cost of the generalization costs of this node, these latter costs

correspond to the different path issued from the different root nodes. Finding the set

of configurations consists of building all the subsets of nodes such as each initial node

is generalized once and only once in the subset. Each configuration is evaluated by

the average cost of its elements.

Nodes Average costs Origins

c (1+3)/2 = 2 x1 x2

b (1+1)/2 = 1 x1 x2

d (1+6)/2 = 3.5 x1 x3

e (1+2)/2 = 1.5 x2 x3

x1 0 x1

x2 0 x2

x3 0 x3

Configurations = {[c, x3] (2), [b, x3] (1), [d, x2] (3.5), [e, x1] (1.5), [x1, x2, x3] (0)}

Fig. 5. Results of the generalization algorithm

Configurations are computed during the generalization process (cf. Updating

configurations in the algorithm). At each step, partial configurations, corresponding to

the retained generalizations, are updated if the new graph generalizes at least two root

graphs.

If more than one configuration has been built at the end of the processing, we

choose the one that verifies the following criteria, applied in this order: a) the

configuration that corresponds to the generalization of the maximum number of root

graphs; b) the configuration containing less numerous elements; and c) the

configuration having the minimal cost, other than zero, considering it is the most

likely to be the most common specific description of the initial events. By means of

these criteria, we encode that the best description of the initial situation corresponds

to the maximal regrouping of graphs, whose cost is less than the limit. In the example

of Fig. 4, these criteria lead to choose the configuration [b, x3] having an average cost

equal to 1. These criteria fit our application, even if, for other kinds of applications,

another order or other criteria may have to be found.
E, set of initial graphs, E = {gi} and n = |E|.
Cgi, sets of generalized graphs from each root
graph gi.
G, generalization space, the set of all
computed generalized graphs. Each
generalized graph is related to a list of root
graphs it generalizes.
Cp, set of partial configurations, initialized to an
empty set
cgp, cost to generalize a predicate
la, threshold that stops generalization

Notation: a -> b : a associated to b

Initialization

For all g ∈ E, and For all g’ ∈ E do
 Create a set Cg
 If the predicate of g has a common
 supertype, sc, with length d of the path
 between the predicate of g’ and sc,
 such as d x cgp < la
 then,
 create a copy gc of g,

 replace the predicate of gc by sc

 add gc ot Cg

 add g to G
 endIf
endFor

Abstraction
While it exists a node to develop do

 For all Cgi ∈ Cg, do
 Selection of a node nd from Cgi
 Updating configurations
 with nd comingFrom Cgi
 generalize nd -> son(nd)
 add son(nd) to Cgi
 endFor

endWhile

Compute the final result

Selection
Depends on the way the generalization space
is searched: in our case, the first found.
Suppress the chosen graph from Cgi.

Updating configurations with nd
comingFrom Cgi
/ updating of the generalization space/

If nd ∉ G,
then add nd -> {root graph of nd} in G
else
 If nd had already been generated
 from the same root graph
 then

 If the cost of nd is lesser,
 then replace the old graph
 by nd
 endIf
 else

/ updating of the partial configurations /
 add, in G, the new root graph of nd to
 the list of its root graphs.
 remove all the configurations
 containing nd
 For all cp = {a, b, c ...}->{x1, x2, x3, ...}∈
Cp do

 If the list of root graphs of cp
 does not contain any x’i, root
 graphs of nd
 then

 create a copy of cp, add nd to
 the left member and the x’i to
 the right member:
 new configuration = {a, b, c,...,
 nd}->{x1, x2, x3, ..., x’1,x’2, x’3}
 add the new configuration to Cp
 endIf

 endFor

 create a new configuration with nd
 endIf

endIf

Fig. 6. The generalization algorithm

The algorithm we propose is general enough to be used in other applications. We

will see in the latter sections that heuristics coming from the application domain and

expressed with simple numeric values, entail the considerable pruning of the search

space, allowing the algorithm to find only the more informative generalizations. As

for all algorithms depending on heuristics, it is not easy to formally demonstrate the

complexity of our algorithm, thus we have worked on a demonstration of the

adequacy and the efficiency of this method by extensive tests.

5. Results

The process has been applied with success to the results of MLK, but this does not

entail a validation on a quantity of data sufficiently large, because text representations

that compose the input of MLK are handcoded at this moment. That is why, in order

to test our algorithm in a better way, we conceived a test generator. Its knowledge

(lattice of types and canonical graphs) is compatible with our application and the

generator is parameterizable so that it can simulate different kinds of application.

5.1 Domain Knowledge

Our application exploits a lattice of types of concepts and a set of canonical graphs.

The lattice (see Fig. 8), results from the work of Chibout [12] who created an

ontology of approximately 3,000 concepts for verbs and entities. We extracted a sub-

part from this ontology so that to obtain a lattice regular enough in depth and in

breadth. Thus, 368 concepts were extracted and distributed in a lattice with an average

depth of 5.59 for a branching factor of 2.75. We have selected 8 verbs from the 128

verbs retained to assign canonical graphs to them. These canonical graphs are defined

relative to the types retained in the lattice and to produce homogeneous bench tests, so

that global results will have a signification.

ToDrinkFunction LiquidAgent Object

Fig. 7. Canonical graph of the concept denoted by the verb "to drink"

The 8 types are ToCauseDeath, ToCauseToFeel, ToDivide, ToBreak, ToFly,

ToAbsorb, ToEat and ToDrink. Subtypes inherit of the canonical graph of their father.

Figure 7 shows the canonical graph of ToDrink. The Function concept is the

supertype of 55 concepts. Some of them are Artisan, Killer or Deputy. Liquid is the

supertype of, among others, Water, Alcohol and Syrup

The lattice of relation types is limited in our application to a flat lattice: all the

relations have the same supertype (T) and the same subtype (⊥). For our tests, we

have used four relations: Relation, Agent, Object and Place.

5.2 Bench Test Generation

We have generated sets of graphs with controllable properties for the generalization.

By specializing canonical graphs in directions randomly chosen and in different

depths, our task is then to retrieve the original common graphs, or, better, some

specialization of them that might not have appeared during the generation phase. So,

our generator builds sets of graphs such as each set possesses a partition of its graphs

where each part (named family) is made of graphs that are specialized from a graph

more specific than their common canonical graph. This definition of the searched

generalizations comes from our application for which it is not suitable to generalize

events by their canonical graph: it does not fit an informative description.

 Sportive Boxer
 ActionFunction Criminal Murderer
 Killer
 Creator Inventor
 Magistrate Advocate
 Judge
 Locksmith
 Artisan Clockmaker
 Shoemender
 Joiner
 Trade Cattlefarmer
 AgriculturalFunction Farmer
 Cultivator
 ProfessionalFunction Pastrycook
 Shopkeeper Grocer
Function Butcher
 Baker
 MedicalProfession Nurse
 Doctor Surgeon
 Prince Psychiatrist
 Sovereign Queen Dentist
 King
 PoliticalFunction Emperor
 Senator
 Depute
 Minister
 MilitaryFunction
 ToSuckUp
 ToIngest ToGulpDown ToWolfDown
 ToIngurgitate ToFeed
ProcessVerb ToNibble
 ToSwallow ToEat ToSupper
 ToAbsorb ToLunch
 ToBooze ToDevour
 ToDrink ToSip
 ToBreathIn ToLap

Fig. 8. Extracts from the concept ontology

To produce a bench test, the generator randomly chooses n predicates (P1 and P2

in Fig. 9), each one being the origin of one family. The canonical graph of each

predicate is then specialized several times (s1 times in family 1 and s2 times in family

2) to generate n graphs, named ancestor graphs. Each ancestor graph is differently

specialized (k1, k2, …, k5 times in family 1 and k1, k2 and k3 times in family 2),

creating different specializations named cousin graphs.

P1 P2

Canonical Graph of P1 Canonical Graph of P2

Ancestor Graph Family 1

s1

Cousin 11 Cousin 13

Ancestor Graph Family 2

s2

Cousin 21 Cousin 23

k1 k5 k1 k3

Fig. 9. Bench test generation framework

Input data of the generalization process are the set of all the cousin graphs of

different families (the 8 cousin graphs), the goal being to retrieve the set made of the

ancestor graphs. The numbers of specialization operations applied (restriction of type

belonging to the canonical graph or not, addition of a relation) are set at the time of

the bench test specification.

We can see below an example of test containing four graphs with two families of

two graphs each. The graphs have been obtained following the parameters presented

in Fig. 10.

Graph 1:
[ToNibble]{

— (Agent) -> [Nurse],

— (Object) -> [Cake],

— (Rel) -> [Apple]}

Graph 2:
[ToDevour]{

— (Agent) -> [Nurse],

— (Object) -> [Meat],

— (Rel) -> [Rice]}

Graph 3:
[ToKill]{

— (Object) -> [Reptile],

— (Agent) -> [Assassin],

— (Rel) -> [Car]}

Graph 4:
[ToEmbed]{

— (Agent) -> [Killer],

— (Objet) -> [Insect],

— (Rel) -> [Water]

Specializations for

ancestors

Specializations for cousins Predicates Canonical Graphs

predicate canonical

graph

concepts

predicate canonical

graph

concepts

concept

adding

1 1 1 ToEat [ToEat] ->

(Agent) ->[Function]

(Object) -> [Food]

0 3

1 1 1

1 2 1 ToCause

Death

[ToCauseDeath]->

(Agent) -> [Function]

(Object)-> [Alive]

0 3

1 2 1

Fig. 10. Parameters for generating a set of graphs

This example entails the construction of 6 configurations in a total time of 115s.

We can see below the optimal solution obtained in 15 seconds and a non-optimal

solution. Costs of operations are specified in section 5.4.

Optimal Solution:
[ToEat]{

— (Agent) -> [Nurse],

— (Object) -> [Food]}

Cost: 8.0

[ToCauseDeath]{

— (Agent) -> [Criminal],

— (Objet) -> [Animal]}

Cost: 10.0

Non-optimal Solution:
[ToEat]{

— (Agent) -> [MedicalProfession],

— (Object) -> [Aliment]}

Cost: 10.0

[ToCauseDeath]{

— (Agent) -> [Criminal],

— (Objet) -> [Animal]}

Cost: 10.0

If we look again at the definition of a good solution given section 4.2, the optimal

solution in this example respects the established criteria: maximum of root graphs

generalized, minimum number of graphs in the configuration and minimal cost in the

case of configuration equality. In the non-optimal configuration, the concept Nurse in

the two graphs of the first family has been overgeneralized in MedicalProfession. So,

we really have obtained the best solution for a cost inferior to those of the other

solution. The four other solutions, not presented here, have inferior costs but do not

generalize all the graphs.

We will now describe two bench tests. The first one tests a difficult case with very

specialized graphs and little generalization costs. It entails the generation of a great

number of configurations and high computation times. The second one shows the

efficiency of the system with higher costs.

5.3 A Borderline Case

We produced 33 sets of 4 graphs containing 3 to 5 concepts and belonging to 2

families. These graphs were produced by applying 3 to 8 specialization operations on

canonical graphs. The threshold for the generalization was set to 10 and a limit of

processing time was fixed to 1 hour by case. For this data set, we set low values to

costs of operations in order to test the borderline case: the costs allow the system to

compute all the ancestor graphs. These costs are the following:

1. any concept generalization: 1,

2. generalization of one concept of the canonical graph: 1,

3. predicate generalization: 2,

4. relation suppression: 1.

The generalization process finds 32.15 configurations on average by bench test, in

an average time of 28mn, 30% of the generalization processes reaching the time limit.

The 70% solved cases are solved in an average time of 15mn.

5.4 Costs Utilization

To show the efficiency of mindfully chosen costs, we carried out the same kind of

tests, but with costs multiplied by 2. We generated 60 bench test with 4 graphs each.

With a time limit set to 1 hour, we obtained 12,2 configurations on average by case.

With 20mn., we obtained 11.9. So, 97.5% of the configurations obtainable in 1 hour

were obtained in less than 20mn. The following results were obtained in this time

limit: 96.7% of the bench tests lead to at least one solution and 73,3% of the cases did

not reach the time limit.

60

65

70

75

80

85

90

95

100

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

Fig. 11. Percentage of computed configurations relatively to the processing time

Figure 11 shows the percentage of configurations obtained for all bench tests in

function of the time. It shows that in a reasonable time of 7mn., 90% of the solutions

obtainable in 20mn (92.3% of those obtainable in 1 hour) are already obtained. Thus,

according to task requirements, if it is possible to miss some solutions, then one can

parameterize the generalization system with processing times really acceptable.

For these tests, the relevant solutions (i.e. informative) are thus those that contain

generalized graph(s) equal to the ancestor graphs from which the graphs of the tests

are issued. This relevant solution can only be found if, for each graph, the sum of the

costs of the specialization operations applied to them is lower or equal to the

generalization limit, here 10. The number of bench tests in this case is 22 (37%). With

a processing time set to one hour, the relevant solution is found for all these cases and

in 20mn., 20 solutions are found (90.9%). In the other 63%, for which the theoretical

cost of the optimum solution is higher than the limit, we find nevertheless 15.8% of

configurations in which the number of generalized graphs is the same as the number

of families. This can be explained by the fact that cousin graphs are randomly

generated. If by chance the specialization process goes the same way for some graphs,

then the effective relevant solution is more specific than the ancestor graph.

5.5 Analysis

It has to be noted that in the first series of tests, the obtainable relevant solutions are

obtained in 70% of the cases (23/33). In the second series, 100% of the obtainable

solutions are found in one hour, however it contains a least number or test cases. So,

with low costs, a great number of solutions is found and we also miss some good

solutions. On the contrary, with high costs, the number of possible solutions is lower

and the system finds all of them. When we will apply the system on real data, we will

have to choose costs according to these two extremes.

These tests show that a cost-bounded algorithm allows us to generalize conceptual

graphs in a reasonable time, in tasks where costs on the generalization operators are

definable. Differences between the two series of tests show the benefits of modulating

the costs and the limit threshold in order to produce interesting generalizations and to

avoid the production of graphs corresponding to overgeneralizations in the

application, i.e. valid graphs with a too general description level.

It is not an easy task to show the validity of solutions obtained with unsupervised

learning. Thus, we have conceived our test protocol in such a way that the searched

solution can be characterized. In our application framework, the validation could be

done externally by an expert who would answer the following question: "Does the

produced solution seem coherent to you: are events described at a correct description

level compared to the described situation?". In case of non-satisfaction, it is possible

to execute the process again to search for new generalizations. Another possibility

would be to validate a system using the learned knowledge.

6. Previous Works

Mineau [7] and Bournaud [8] have conceived algorithms to build a classification from

an initial set of conceptual graphs. Even if we do not want to classify data, finding a

generalization level can be seen as an equivalent problem as it requires the algorithm

to compute possible generalizations. The major difference comes from the

generalization operators used. Suppression of relations entails the necessity of a

complete description of each generalized graph and not only a partial description by

their relations. To limit the effective complexity, we have introduced costs associated

with operators. These costs have to be fixed relative to the type of generalizations

expected in the application. As in [8], we also use domain knowledge to constrain

generalization.

Our work comes under Inductive Logic Programming (ILP) domain [13] and our

problem is particularly close to the work of Esra Erdem and Pierre Flener [14], who

redefine the minimal generalization in order to find a minimal set of generalized

clauses in function of an over-generalization criterion. In the field of ILP and

conceptual graphs, our kind of problem is studied in the work of Marc Champesne on

the reduction of the search space by the use of the notion of "empirical subsumption"

[11]. However his results can only be applied to non-connected graphs whereas our

algorithm handles connected ones.

About our application itself, i.e. learning descriptions of prototypical situations, our

work is different of [1], [2] and [3] essentially because we do not hypothesize the

existence of previous knowledge about situations and learning is completely

unsupervised. The system MLK, which implements this application, gathers and

selects events and their relevant characteristics when recurrent situations are found in

texts, and the system proposed in this paper assumes the construction of a general

description with respect to semantic knowledge.

7. Conclusion

Learning structures in order to describe concrete situations has lead us to construct the

system MLK, able to identify events linked to a same situation. In the purpose of

generating general descriptions for these situations, we have studied the

generalization of events represented by conceptual graphs. However the

generalization algorithm we propose is independent enough of our particular context

and could be used with other applications.

This algorithm is completely implemented in Smalltalk. The tests made show the

benefit of fixing costs on generalization operators in applications having only a weak

domain theory.

The protocol of bench tests generation we have developed allows us to control

different parameters such as the definition of an optimal solution, the number of

operations to be applied in order to find this solution and the homogeneity of the

bench tests. It presents two major advantages: testing the efficiency of our approach

and allowing us to find values for the diverse parameters of the generalization

algorithm by successive tests.

At this time, we are working on the automatic acquisition of ontologies from

partial syntactic analysis of phrases. This work will allow us, in a middle-term

prospect, to apply the described generalization process to a great amount of data very

similar to Thematic Units. In a more long-term prospect, this should entail the

application of the complete MLK system on data automatically extracted from large

volumes of texts.

References

1. Raymond Mooney and Gerald DeJong. Learning schemata for natural language processing.

In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los

Angeles, 1985.

2. Michael J. Pazzani. Integrating explanation-based and empirical learning methods in

OCCAM. In Proceedings of the Third European Working Session on Learning, Glasgow,

1988.

3. Ashwin Ram. Indexing, elaboration and refinement: incremental learning of explanatory

cases. Machine Learning, 10(3):7-54, 1993.

4. Olivier Ferret and Brigitte Grau. An Aggregation Procedure for Building Episodic Memory,

15th IJCAI, Nagoya, 1997.

5. Olivier Ferret et Brigitte Grau, Construire une mémoire épisodique à partir de textes :

pourquoi et comment ?, RIA, vol.12, n°3, pp. 317-409, 1998.

6. John F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison Wesley, 1984.

7. Guy W. Mineau. Induction on Conceptual Graphs: Finding Common Generalizations and

Compatible Projections. Conceptual Structures - current research and practice. Eds. T. E.

Nagle, J. A. Nagle, L. L. Gerholz and P. W. Eklund, New York, Ellis Horwood, 1992.

8. Isabelle Bournaud. Construction de hiérarchies conceptuelles pour l’organisation de

connaissances. LMO’96, 1996.

9. Gerard Ellis. Compiled Hierarchical Retrieval. Conceptual Structures - current research and

practice. Eds. T. E. Nagle, J. A. Nagle, L. L. Gerholz and P. W. Eklund, New York, Ellis

Horwood, 1992.

10. K. B. Michalski and R. E. Stepp. Learning from observation: Conceptual clustering. In

Machine Learning, An Artificial Approach, Vol. 1, pp. 331-363, Morgan Kaufmann, 1983.

11. Marc Champesme. Using Empirical Subsumption to Reduce Search Space in Learning.

International Conference on Conceptual Structures, ICCS’95. Santa Cruz, California, USA,

1995.

12. Karim Chibout and Anne Vilnat, Computational Processing of Verbal Polysemy with

Conceptual Structures, Acts Conceptual Structures: Theory, Tools and Applications (6th

ICCS), Montpellier, LNCS volume 1453, p. 367-374, 1998.

13. Stephen Muggleton et Luc De Raedt, Inductive Logic Programming: Theory and Methods.

Journal of Logic Programming 1994 :19,20 :629-679.14. Esra Erdem et Pierre

Flener. A Re-Definition of Least Generalizations, and Construction Modes as a New

Declarative Bias for ILP, Unpublished, 1998,

http://www.cs.utexas.edu/users/esra/papers/ErdFle98.ps.

