Abstract
The paper concerns 2D-3D pose estimation in the algebraic language of kinematics. The pose estimation problem is modelled on the base of several geometric constraint equations. In that way the projective geometric aspect of the topic is only implicitly represented and thus, pose estimation is a pure kinematic problem. The dynamic measurements of these constraints are either points or lines. The authors propose the use of motor algebra to introduce constraint equations, which keep a natural distance measurement, the Hesse distance. The motor algebra is a degenerate geometric algebra in which line transformations are linear ones. The experiments aim to compare the use of different constraints and different methods of optimal estimating the pose parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Perwass, C., Lasenby, J.: A novel axiomatic derivation of geometric algebra. Technical Report CUED/F - INFENG/TR.347, Cambridge University Engineering Department (1999)
Shevlin, F.: Analysis of orientation problems using Plücker lines. International Conference on Pattern Recognition, Brisbane 1, 685–689 (1998)
Horaud, R., Phong, T.Q., Tao, P.D.: Object pose from 2-d to 3-d point and line correspondences. International Journal of Computer Vision 15, 225–243 (1995)
Blaschke, W.: Mathematische Monographien 4, Kinematik und Quaternionen. Deutscher Verlag der Wissenschaften (1960)
Grimson, W.E.L.: Object Recognition by Computer. The MIT Press, Cambridge (1990)
Sommer, G., Rosenhahn, B., Zhang, Y.: Pose Estimation Using Geometric Constraints Technical Report, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel (2003)
Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. Journ. Robotics Res. 18, 286–298 (1999)
Bayro-Corrochano, E.: The geometry and algebra of kinematics. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2000) (to be published)
Carceroni, R.L., Brown, C.M.: Numerical Methods for Model-Based Pose Recovery. Techn. Rept. 659, Comp. Sci. Dept., The Univ. of Rochester, Rochester, N. Y. (August. 1998)
Zhang, Y., Sommer, G., Bayro-Corrochano, E.: The motor extended Kalman filter for dynamic rigid motion estimation from line observations. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, Springer, Heidelberg (2000)
Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rosenhahn, B., Zhang, Y., Sommer, G. (2000). Pose Estimation in the Language of Kinematics. In: Sommer, G., Zeevi, Y.Y. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 2000. Lecture Notes in Computer Science, vol 1888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722492_22
Download citation
DOI: https://doi.org/10.1007/10722492_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41013-3
Online ISBN: 978-3-540-45260-7
eBook Packages: Springer Book Archive