Skip to main content

Pose Estimation in the Language of Kinematics

  • Conference paper
Algebraic Frames for the Perception-Action Cycle (AFPAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1888))

Abstract

The paper concerns 2D-3D pose estimation in the algebraic language of kinematics. The pose estimation problem is modelled on the base of several geometric constraint equations. In that way the projective geometric aspect of the topic is only implicitly represented and thus, pose estimation is a pure kinematic problem. The dynamic measurements of these constraints are either points or lines. The authors propose the use of motor algebra to introduce constraint equations, which keep a natural distance measurement, the Hesse distance. The motor algebra is a degenerate geometric algebra in which line transformations are linear ones. The experiments aim to compare the use of different constraints and different methods of optimal estimating the pose parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perwass, C., Lasenby, J.: A novel axiomatic derivation of geometric algebra. Technical Report CUED/F - INFENG/TR.347, Cambridge University Engineering Department (1999)

    Google Scholar 

  2. Shevlin, F.: Analysis of orientation problems using Plücker lines. International Conference on Pattern Recognition, Brisbane 1, 685–689 (1998)

    Google Scholar 

  3. Horaud, R., Phong, T.Q., Tao, P.D.: Object pose from 2-d to 3-d point and line correspondences. International Journal of Computer Vision 15, 225–243 (1995)

    Article  Google Scholar 

  4. Blaschke, W.: Mathematische Monographien 4, Kinematik und Quaternionen. Deutscher Verlag der Wissenschaften (1960)

    Google Scholar 

  5. Grimson, W.E.L.: Object Recognition by Computer. The MIT Press, Cambridge (1990)

    Google Scholar 

  6. Sommer, G., Rosenhahn, B., Zhang, Y.: Pose Estimation Using Geometric Constraints Technical Report, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel (2003)

    Google Scholar 

  7. Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. Journ. Robotics Res. 18, 286–298 (1999)

    Article  Google Scholar 

  8. Bayro-Corrochano, E.: The geometry and algebra of kinematics. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2000) (to be published)

    Google Scholar 

  9. Carceroni, R.L., Brown, C.M.: Numerical Methods for Model-Based Pose Recovery. Techn. Rept. 659, Comp. Sci. Dept., The Univ. of Rochester, Rochester, N. Y. (August. 1998)

    Google Scholar 

  10. Zhang, Y., Sommer, G., Bayro-Corrochano, E.: The motor extended Kalman filter for dynamic rigid motion estimation from line observations. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, Springer, Heidelberg (2000)

    Google Scholar 

  11. Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenhahn, B., Zhang, Y., Sommer, G. (2000). Pose Estimation in the Language of Kinematics. In: Sommer, G., Zeevi, Y.Y. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 2000. Lecture Notes in Computer Science, vol 1888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722492_22

Download citation

  • DOI: https://doi.org/10.1007/10722492_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41013-3

  • Online ISBN: 978-3-540-45260-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics