Abstract
The Beltrami diffusion-type process, reformulated for the purpose of image processing, is generalized to an adaptive forward-and-backward process and applied in localized image features’ enhancement and denoising. Images are considered as manifolds, embedded in higher dimensional feature-spaces that incorporate image attributes and features such as edges, color, texture, orientation and convexity. To control and stabilize the process, a nonlinear structure tensor is incorporated. The structure tensor is locally adjusted according to a gradient-type measure. Whereas for smooth areas it assumes positive values, and thus the diffusion is forward, for edges (large gradients) it becomes negative and the diffusion switches to a backward (inverse) process. The resultant combined forward-and-backward process accomplishes both local denoising and feature enhancement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chambolle, A.: Partial Differential Equations and Image processing. In: Proceedings IEEE ICIP, vol. 1, pp. 16–20 (1994)
Cottet, G.H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Math. Comp. 61, 659–673 (1993)
Di Zenzo, S.: A note on the gradient of a multi image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)
Gilboa, G., Sochen, N., Zeevi, Y.Y.: Anisotropic selective inverse diffusion for signal enhancement in the presence of noise, To appear in IEEE ICASSP 2000, Istanbul (2000)
Kimmel, R., Sochen, N., Malladi, R.: On the geometry of texture, Report, Berkeley Labs. UC, LBNL-39640, UC-405 (November 1996)
Kimmel, R., Malladi, R., Sochen, N.: Images as Embedding Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images. In: Proc. of IEEE CVPR 1997, pp. 350–355 (1997)
Kimmel, R., Sochen, N., Malladi, R.: From High Energy Physics to Low Level Vision. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 236–247. Springer, Heidelberg (1997)
Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)
Kreyszing, E.: Differential Geometry. Dover Publications, Inc., New York (1991)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pat. Anal. Machine Intel. PAMI-12(7), 629–639 (1990)
Polyakov, A.M.: Quantum geometry of bosonic strings. Physics Letters 103B, 207–210 (1981)
Sapiro, G., Ringach, D.L.: Anisotropic Diffusion of multivalued images with applications to color filtering. In: IEEE Trans. Image Proc., 5,1582–1586 (1996)
Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing 7, 310–318 (1998)
Sochen, N., Zeevi, Y.Y.: Images as manifolds embedded in a spatial-feature non-Euclidean space, EE-Technion report no. 1181 (November 1998)
Sochen, N.: Stochastic processes in vision I: From Langevin to Beltrami., EETechnion technical report No. 245
Sochen, N., Zeevi, Y.Y.: Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space. In: IEEE ICIP 1998, Chicago (1998)
ter Haar Romeny, B.M. (ed.): Geometry Driven Diffusion in Computer Vision. Kluwer Academic Publishers, Dordrecht (1994)
Weickert, J.: Coherence-enhancing diffusion of colour images. Image and Vision Comp. 17, 199–210 (1999)
Weickert, J.: Multiscale texture enhancement. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 230–237. Springer, Heidelberg (1995)
Weickert, J.: Anisotropic diffusion in image processing, Ph.D. Thesis, Kaiserslautern University, Germany (November 1995)
Weickert, J.: Scale-space properties of nonlinear diffusion filtering with diffusion tensor, Report No. 110, Laboratory of Technomathematics, University of Kaiserslautern (1994)
Weickert, J.: Coherence-enhancing diffusion of colour images. In: Proc. VII National Symposium on Pattern Rec. and Image Analysis, Barcelona, vol. 1, pp. 239–244 (1997)
Witkin, A.P.: Scale space filtering. In: Proc. Int. Joint Conf. On Artificial Intelligence, pp. 1019–1023 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sochen, N.A., Gilboa, G., Zeevi, Y.Y. (2000). Color Image Enhancement by a Forward-and-Backward Adaptive Beltrami Flow. In: Sommer, G., Zeevi, Y.Y. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 2000. Lecture Notes in Computer Science, vol 1888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722492_25
Download citation
DOI: https://doi.org/10.1007/10722492_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41013-3
Online ISBN: 978-3-540-45260-7
eBook Packages: Springer Book Archive