Skip to main content

Extended Kalman Filter Design for Motion Estimation by Point and Line Observations

  • Conference paper
Algebraic Frames for the Perception-Action Cycle (AFPAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1888))

  • 459 Accesses

Abstract

The paper develops three extended Kalman filters (EKF) for 2D-3D pose estimation. The measurement models are based on three constraints which are constructed by geometric algebra. The dynamic measurements for these EKF are either points or lines. The real monocular vision experiments show that the results of EKFs perform more stable than that of LMS method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosenhahn, B., Zhang, Y., Sommer, G.: Pose estimation in the language of Kinematics. AFPAC (2000) (submitted)

    Google Scholar 

  2. Sommer, G., Rosenhahn, B., Zhang, Y.: Pose Estimation using Geometric Constraints. Techn. Rept. 2003, Institut für Informatik und Praktische Mathematik Christian-Albrechts-Universität zu Kiel (2000)

    Google Scholar 

  3. Zhang, Y., Sommer, G., Bayro-Corrochano, E.: The motor extended Kalman filter for dynamic rigid motion estimation from line observations. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, Springer, Heidelberg (2000)

    Google Scholar 

  4. Bayro-Corrochano, E.: The geometry and algebra of kinematics. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2000) (to be published)

    Google Scholar 

  5. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel Publ. Comp., Dordrecht (1984)

    MATH  Google Scholar 

  6. Carceroni, R.L., Brown, C.M.: Numerical Methods for Model-Based Pose Recovery. Techn. Rept. 659, Comp. Sci. Dept., The Univ. of Rochester, Rochester, N. Y. (August 1998)

    Google Scholar 

  7. Andersson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice Hall, Englewood Cliffs (1979)

    Google Scholar 

  8. Zhang, Z., Faugeras, O.: 3D Dynamic Scene Analysis. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  9. Bar-Itzhack, I.Y., Oshman, Y.: Attitude determination from vector observations: quaternion estimation. IEEE Trans. Aerospace and Electronic Systems AES-21, 128–136 (1985)

    Article  Google Scholar 

  10. Phong, T.Q., Horaud, R., Yassine, A., Tao, P.D.: Object pose from 2-d to 3- d point and line correspondences. International Journal of Computer Vision 15, 225–243 (1995)

    Article  Google Scholar 

  11. Sommer, G.: The global algebraic frame of the perception-action cycle. In: Jähne, B., Haussecker, H., Geissler, P. (eds.) Handbook of Computer Vision and Applications, vol. 3, pp. 221–264. Academic Press, San Diego (1999)

    Google Scholar 

  12. Rooney, J.: A comparison of representations of general screw displacement. Environment and Planning B5, 45–88 (1978)

    Google Scholar 

  13. Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Understanding 54, 358–367 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Rosenhahn, B., Sommer, G. (2000). Extended Kalman Filter Design for Motion Estimation by Point and Line Observations. In: Sommer, G., Zeevi, Y.Y. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 2000. Lecture Notes in Computer Science, vol 1888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722492_27

Download citation

  • DOI: https://doi.org/10.1007/10722492_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41013-3

  • Online ISBN: 978-3-540-45260-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics