Skip to main content

Reactively Secure Signature Schemes

  • Conference paper
Information Security (ISC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2851))

Included in the following conference series:

Abstract

Protocols for problems like Byzantine agreement, clock synchronization or contract signing often use digital signatures as the only cryptographic operation. Proofs of such protocols are frequently based on an idealizing “black-box” model of signatures. We show that the standard cryptographic security definition for digital signatures is not sufficient to ensure that such proofs are still valid if the idealized signatures are implemented with real, provably secure signatures. We propose a definition of signature security in general reactive, asynchronous environments and prove that for signature schemes where signing just depends on a counter as state the standard security definition implies our definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic library. IACR Cryptology ePrint Archive 2003/015 (January 2003), http://eprint.iacr.org/

  2. Beaver, D.: How to break a ”secure” oblivious transfer protocol. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 285–296. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 136–145 (2001)

    Google Scholar 

  5. Cramer, R., Damgård, I.: Secure signature schemes based on interactive protocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 297–310. Springer, Heidelberg (1995)

    Google Scholar 

  6. Cramer, R., Damgård, I.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996)

    Google Scholar 

  7. Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. Journal of Cryptology 11(3), 187–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: Proc. 22nd IEEE Symposium on Security & Privacy, pp. 184–200 (2001)

    Google Scholar 

  10. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pp. 387–394 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backes, M., Pfitzmann, B., Waidner, M. (2003). Reactively Secure Signature Schemes. In: Boyd, C., Mao, W. (eds) Information Security. ISC 2003. Lecture Notes in Computer Science, vol 2851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10958513_7

Download citation

  • DOI: https://doi.org/10.1007/10958513_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20176-2

  • Online ISBN: 978-3-540-39981-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics