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Abstract. This paper studies non-gaited, multi-step motion planning, to enable
limbed robots to free-climb vertical rock. The application of a multi-step planner
to a real free-climbing robot is described. This planner processes each of the many
underlying one-step motion queries using an incremental, sample-based technique.
However, experimental results point toward a better approach, incorporating the
ability to detect when one-step motions are infeasible (i.e., to prove disconnection).
Current work on a general method for doing this, based on recent advances in
computational real algebra, is also presented.

1 Introduction

1.1 Broad context

The Probabilistic-Roadmap (PRM) motion planning approach [19], or one
of its variants, is widely used for planning paths through high-dimensional
configuration spaces subject to multiple constraints. PRM planners, which
capture connectivity by a network of local paths joining sampled configura-
tions, can often construct feasible paths very quickly. However, the approach
lacks a formal stopping criterion. Typically, planners are allowed to search
for a fixed length of time, after which a motion query is declared infeasible.
Because PRM planners often have a fast convergence rate (i.e., the proba-
bility that they find a path when one exists goes quickly to 1), this heuristic
works fine for processing a small number of queries. But imagine we want
to process many queries, each in a different configuration space subject to
different constraints. Then, a fundamental question arises: how much time
should be spent on each query? Too much, and time is wasted on infeasible
queries; too little, and feasible queries – which could be critical – may be
falsely declared infeasible.

Multi-step planning for climbing robots (as well as general multi-limbed
locomotion and manipulation planning) presents exactly this challenge. By
applying a basic multi-step planner to a real climbing robot (Section 4),
we establish the importance of incorporating a “disconnection planner” that
rejects most infeasible queries. A longer time could then be allowed for re-
maining queries (knowing that most feasible problems are solved quickly)
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and a much smaller amount of time would be wasted on infeasible queries.
A portion of this paper (Section 5) describes ongoing work on this topic – at
this stage, we still do not have a completely satisfactory solution.

1.2 The climbing problem

Our goal is to enable a wide class of multi-limbed robots to climb vertical
rock using only natural features and friction for upward progress (i.e., to free-
climb). Such robots need not incorporate special fixtures or tools, nor need
they be designed specifically for climbing, as have previous climbing robots
(e.g., [2,3,11,16,17,25]). Their flexibility could benefit several application ar-
eas, including search-and-rescue, surveillance, and planetary exploration.

We consider robots with a small number of articulated limbs. We do
not distinguish between limbs, and call the end-point of each one a hand.
To climb vertical terrain, a robot must go through a continuous sequence of
configurations satisfying certain constraints (e.g., equilibrium, collision, joint-
torque limits). At each configuration, some of the robot’s hands are in contact
with the terrain – a surface with small, arbitrarily distributed features (e.g.,
protrusions or holes) called holds. During a one-step motion, the robot brings
one hand to a new hold while using frictional contacts at other hands and
internal degrees of freedom (DOF’s) to maintain equilibrium. A multi-step
motion is a sequence of one-step motions.

This paper presents a new framework for computing multi-step climbing
moves. We view the multi-step motion space of the robot as a discrete graph.
Corresponding to each association of hands to holds (i.e., each stance) is
a set of feasible configurations (satisfying all constraints), that might have
one or more components. Each node in the graph represents one of these
components. Each edge is a one-step motion.

It is computationally practical neither to explicitly construct the feasible
space at every stance, nor to exactly compute one-step motions to neighbor-
ing stances. Instead, we use an augmented PRM approach, based on our pre-
viously developed one-step planner [8,9]. Consequently, as described above,
we are faced with the challenge of deciding how much time should be spent
searching for each one-step motion.

2 Related Work

2.1 Multi-step planning

Multi-step motion planning for climbing robots is related to general multi-
limbed locomotion and manipulation planning. Just as for climbing robots,
multi-limbed locomotion is characterized by a sequence of continuous one-
step movements in which feet are placed on or removed from the terrain.
Likewise, manipulation paths are composed of sequences of one-step motions
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either of a grasped object and its manipulator or of the manipulator alone,
respectively called “transfer” and “transit” motions [1].

Three main approaches to multi-step motion planning have been used:

Continuous approach. Here, the motion space is viewed as a single, high-
dimensional, continuous space. The configuration of the robot moves on suc-
cessive manifolds embedded in this space. Each manifold corresponds to a
different set of contact constraints. This type of representation (called “strat-
ified” [14,15] or “hybrid mechanical” [10]) is convenient for a controllability-
based analysis. In particular, it leads to techniques that transform nominal
paths to feasible, gaited trajectories, similar to methods used for smooth, non-
holonomic systems [22,24]. However, the computational cost of these methods
grows quickly with the dimensionality, geometric complexity, and number of
embedded manifolds. They seem impractical for free-climbing robots.

Constraint relaxation. These methods generate an initial path considering
only some of the constraints and iteratively refine this path into a feasible
one by incorporating additional constraints [13]. Foot or finger placement
concepts may be explicitly used in the construction of the paths. One tech-
nique proposed for manipulation planning is to first plan a trajectory for the
grasped object ignoring manipulators, then generate manipulator trajectories
to achieve necessary re-grasps [20]. A similar strategy for multi-limbed robots
on uneven terrain is to first generate a feasible path for the center of mass
(ignoring foot placement), then construct specific foot placement and limb
motions that keep the center of mass stable along this path [12]. This ap-
proach can generate multi-step motions quickly for some systems. However,
it is not guaranteed to find a path if one exists, and generally requires tuned
heuristics to perform well. In addition, it is based on having some way of pri-
oritizing the constraints. So, it does not handle interdependent constraints
well (e.g., self-collision, equilibrium, and torque limits in climbing motions).

Foot-placement or grasp-based. These methods, like our own, carefully
consider where a robot or manipulator should place its feet, hands, or fingers.
Many are based on the framework for manipulation planning proposed by [1],
which (as we do) views the multi-step motion space as a graph. This approach
has two distinct advantages for systems such as free-climbing robots. First,
by viewing the manifold associated with each set of contact constraints as
a separate configuration space with its own lower-dimensional parameteri-
zation, the dimension of each one-step motion query is reduced. Second, by
taking advantage of an intermediate discretization of the environment into
specific foot/hand/finger placements, regions of useless contact locations are
eliminated, again reducing overall problem complexity. On the other hand,
the challenge of this approach is to efficiently compute the structure of the
multi-step graph.
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For specific systems (e.g., “spider-robots” either walking on horizontal
terrain [7] or with fixed gaits in planar tunnels [29,32], and 3-limbed, planar,
climbing robots subject to equilibrium constraints only [8]), it is possible to
quickly compute the exact structure of this graph. For more general systems
(including the climbing robots considered in this paper), it seems impractical
to compute the structure of the multi-step motion space exactly. Heuristic
search techniques have been used in cases where a predefined set of one-step
moves is available [5,21]. If no such set has been predefined, continuous ex-
ploration is needed [26,30]. The “fuzzy PRM” approach of [26] is particularly
interesting, since it seeks to address, statistically, the problem of where to
allocate planning time over possible one-step motions. However, it still does
not solve the fundamental problem of when to stop searching for a particular
one-step motion.

2.2 Disconnection proofs

The idea of proving that two configurations are not path-connected is not
new. This idea is central to the concept of “complete” or exact motion plan-
ning, in which a feasible connecting path is returned if and only if one ex-
ists [31]. But while work on exact motion planning has provided important
insight and bounds on problem complexity, it has not been practical for real
applications. Instead, approximate methods such as PRM [19] are used to
construct feasible paths quickly, whenever possible.

Recently, more attention has been paid to developing “disconnection”
planners [4], which search for proofs that no path exists. Establishing this
type of proof is difficult in general, since it involves searching for disconnect-
ing (n-1)-D manifolds in n-D space, rather than for 1-D connecting paths.
The work of [4] presents one approach, for a polyhedral robot moving among
polyhedral obstacles in 3-D workspace, based on bounding volumes. The
proposed technique requires knowledge of critical (i.e., narrow) regions of
the workspace, and is not applicable to more general constraints. Another
approach is to compute both under- and over-approximations to the con-
nectivity of simpler sub-problems, and use these approximations to prove
disconnection [18]. This strategy requires a smart method of decomposition
and model-reduction, and the implementation of a complete planner.

Two ideas are common to both approaches. First, both seek to relax the
original feasibility problem, so that conservative proofs of infeasibility are
found in a simpler space. Second, both integrate the search for disconnection
proofs with a search for connecting paths (loosely, this can be described as a
primal-dual method). In Section 5, we describe a systematic method of prob-
lem relaxation and a general framework for integrating “primal” and “dual”
search when an over-approximation to the feasible space can be expressed as
a semialgebraic set.
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3 Free-Climbing Robots

3.1 Description of robot

We have focused our work on a real free-climbing robot, LEMUR IIb, devel-
oped by the Mechanical and Robotic Technologies Group at the Jet Propul-
sion Laboratory [9]. This robot was designed to have a number of capabilities
in addition to climbing (e.g., assembly, inspection, maintenance, transport,
intervention) and to be able to traverse a variety of other types of terrain
(e.g., roads, talus, dirt, urban rubble).

LEMUR IIb consists of four identical limbs attached to a circular chassis,
with a total mass of 7 kg (Fig. 1). Each limb contains three revolute joints,
providing two in-plane (yaw) and one out-of-plane (pitch) DOF’s. Each joint
has an identical drive-train, capable of a maximum continuous torque of
5.0 N-m and a maximum speed of 45 deg/s. Each end-effector is a single peg
wrapped in high-friction rubber. LEMUR IIb can be field-operated, with on-
board batteries, processing, and sensors (including a swiveling stereo camera
pair, a 6-axis force/torque sensor at each shoulder, a 3-axis accelerometer,
and joint angle encoders).

The terrain climbed by LEMUR IIb in our tests is an indoor, near-vertical,
planar surface. This surface is covered with small, artificial rock features
exactly as are indoor “climbing gyms” for human climbers. In order to focus
on the planning algorithm, the location and friction characteristics of each
feature are identified manually and pre-surveyed. As a further simplification,
in our current implementation we maintain LEMUR IIb’s chassis parallel to
and at a fixed distance from the climbing surface, and use the out-of-plane
DOF in each limb only to make or break contact with features.

Finally, at this stage in our research, the robot’s motion is slow enough
to be assumed quasi-static.

Fig. 1. LEMUR IIb, a multi-use robot capable of free-climbing (Mechanical and
Robotic Technologies Group, Jet Propulsion Laboratory) [9].



6 T. Bretl et al.

3.2 Model and notation

We call the robot’s circular chassis the pelvis. In each limb, the first joint
(nearest the pelvis) is called the shoulder, the second joint is called the elbow,
and the third (out-of-plane) joint is called the wrist. Assuming that the pelvis
moves at a fixed distance parallel to the wall, any configuration of the robot
is defined by 15 parameters: the position/orientation (xp, yp, θp) of the pelvis
and the joint angles (θ1, θ2, θ3) of each limb.

Any point on the terrain is a potential contact – either on the contour
of a continuous rock feature, or on the planar climbing surface. We assume
that a discrete number of useful contacts have been identified; these points
are called holds. For LEMUR IIb, all holds lie on an inclined plane but can
have arbitrary orientation, so each is defined by a 2-D point (xi, yi) and a
3-D direction νi. The endpoint of each limb is a hand. Holds at which hands
are in contact are the supporting holds. We assume that supporting holds are
point contacts, where friction is modeled by Coulomb’s law.

When climbing, LEMUR IIb always maintains either three or four sup-
porting holds. The set of supporting holds is a stance, denoted σ – to differ-
entiate between 3-hold and 4-hold stances, we write σ3 and σ4. The linkage
between the supporting holds – containing the pelvis and either three or four
limbs – is called the contact chain. When only three supporting holds are
used, the fourth limb is the free limb.

Because of the closed-chain constraint, the robot’s continuous motion with
four supporting holds occurs on a 3-D manifold Cσ4 in the robot’s configu-
ration space. With three supporting holds, motion occurs on a 6-D manifold
Cσ3. This motion is subject to four additional constraints: quasi-static equi-
librium, joint angle limits, joint torque limits, and (self-)collision. The feasible
space at a stance σ is the subset Fσ of Cσ satisfying each of these constraints.
The limbs have non-negligible mass, so their motion affects the robot’s equi-
librium. If two points in Fσ are connected by a continuous path in Fσ, we
say they are in the same component of Fσ. (Henceforth, a “continuous path”
will always be taken to mean a continuous motion of the robot at some fixed
stance, i.e., with fixed holds.)

3.3 Climbing motions

To climb upward, the robot must switch between 3-hold and 4-hold stances.
Two stances σ3 and σ4 are adjacent if σ4 = σ3 ∪ {i} for some hold i. The
robot can only switch between adjacent stances σ and σ′ (i.e., place or remove
a hand) at points qt ∈ Fσ ∩ Fσ′ . We call such points transition points. Given
a start configuration qs ∈ Fσ at a stance σ, we say that a component of the
feasible space Fσ′ at an adjacent stance σ′ is reachable if there is a continuous
path connecting qs to a transition point in that component. This path is a
one-step motion. Examples of one-step motions are shown in Figs. 2 and 3.
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Fig. 2. A one-step motion with a 4-hold stance, to remove the bottom right hand.

Fig. 3. A one-step motion with a 3-hold stance, to place the bottom right hand.

4 Multi-Step Planning

4.1 Basic concepts

Given a stance σ, a start configuration qs ∈ Fσ, and a goal hold g, the multi-
step planning problem is to construct a sequence of one-step motions that
will bring the robot to a stance σg that contains g. (There may be a number
of different valid stances σg.) This problem is a search through a graph. Each
node in this graph is a component of Fσ at some stance σ. Each edge is
a one-step motion. The sequence of one-step motions is not assumed to be
periodic (i.e., a gait) – the order in which limbs are placed and removed from
holds is arbitrary, and is selected as part of the graph search.

In practice, only local sensing will be available, so long multi-step plans
will not be computed. Instead, short (4-10 one-step motions) plans will be
generated repeatedly – with graph searches of high breadth but low depth –
as the robot explores more of the terrain. However, in our current implemen-
tation the terrain has been pre-surveyed, and consequently our tests are for
multi-step searches of lower breadth and higher depth.

The concept that nodes in the graph are, fundamentally, components of
feasible spaces and not particular configurations is an important one. For
example, one-step motions that take a configuration qs ∈ Fσ to two transi-
tion points qt1 , qt2 in the same component of an adjacent feasible space Fσ′

are equivalent. Keeping both one-step motions, and considering both points
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Fig. 4. Schematic of a multi-step search. Gray regions are feasible spaces at different
stances (a dotted line shows the two components of Fσ′). Bold arcs are intersections
between feasible spaces at adjacent stances. Thin lines are one-step motions.

qt1 and qt2 as distinct, adds redundant nodes and edges to the graph. This
increases the overall planning time of a multi-step search. So although it
might be convenient to index nodes by individual configurations and edges
by point-to-point paths, these always represent entire components and the
transitions between them.

Figure 4 shows a schematic of how a multi-step search might proceed. At
each stage, transition points are found to adjacent stances at which compo-
nents of the feasible space Fσ′ intersect the base feasible space Fσ. Note that
the feasible space at stance σ′ has two components, each of which admits one-
step motions to different adjacent stances. Eventually, a path is constructed
to a configuration qg in the interior of the feasible space Fσ′′′′ at a stance
containing the goal hold.

4.2 Consequences of an incremental sample-based approach

In general, the graph is much larger – and many more one-step queries must
be made – than in the previous example. It is computationally impracti-
cal to determine exactly which adjacent stances are reachable from a start
configuration qs ∈ Fσ. Therefore, we use an approximate method: for each
adjacent stance σ′, first we sample transition points qt ∈ Fσ ∩ Fσ′ , then we
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try to construct a continuous path from qs to each qt, using an augmented
PRM planner [9]. Similar techniques are used in other multi-step planning
algorithms (e.g., [21,26,30]).

However, this approach has two consequences. First, since the structure
of each feasible space Fσ is never exactly known, redundant nodes and edges
may be introduced. As noted in Section 4.1, this redundancy increases overall
planning time. Second, since transition points are sampled and feasible paths
are found only with some probability, nodes and edges may be missed. This
reduces the overall probability of success and tends to increase the resulting
path length (if a path is found).

4.3 Baseline results

Long multi-step paths. We applied our one-step planner to generate climb-
ing motions for LEMUR IIb, which were subsequently executed by the real
robot. In these initial tests, only one-step moves were computed by the plan-
ner. To get multi-step paths, the user specified which hold to grab or release
at each step. Snapshots from one climb, taking the robot from bottom to top
of the climbing surface, are shown in Fig. 5. The one-step planner generated,
on-line, each of 88 one-step motion trajectories forming the multi-step path.

The distribution of planning times for this example is shown in Fig. 6.
Using our sampling scheme, most one-step moves were planned very quickly
(less than 0.5 s). However, several difficult moves took more time (more than
5.0 s), even as much as 17.3 s. This illustrates the important issue raised in
Section 1.1. Many one-step motion queries are made in a multi-step search;
how should we choose the amount of time Tmax after which the one-step

Fig. 5. Snapshots of a multi-step climb.
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Fig. 6. The distribution of one-step plan-
ning times along a multi-step path consist-
ing of 88 one-step motions. Minimum plan-
ning time was 0.09 s, maximum was 17.3 s.
Mean planning time was 1.02 s, but over
75% of the one-step motions were computed
quicker than average.

planner returns failure? In this example, suppose Tmax = 2.0 s (twice the
mean value) – infeasible one-step motions are rejected quickly, but several
difficult moves (15% of the multi-step path) likely are not found. Alterna-
tively, suppose Tmax = 20.0 s (greater than the maximum value) – now, all
feasible one-step motions likely are found, but every infeasible query takes
ten times longer, drastically increasing total search time.

In this example, all one-step motions were computed along a single, user-
defined, multi-step path. In a general search, many different multi-step paths
may exist between start and goal stances. However, a “critical passage” in
the multi-step graph is not necessarily a single critical edge (i.e., a single,
difficult, one-step move). If the graph can be divided into two components
– one containing the start node, the other containing the goal – such that
each edge between these two components represents a one-step motion that
is difficult to compute, then this group of edges represents a critical passage.

Performance of a basic multi-step planning algorithm. We have also
implemented a fully automatic, multi-step planner for LEMUR IIb, incorpo-
rating the same one-step planning algorithm. This planner does not yet ex-
ploit search heuristics or other augmentations (e.g., our disconnection proof
of Section 5). We have tested our planner in simulation, to understand the
effects of varying the amount of time Tmax it is allowed to search for each
one-step motion. Figure 7 shows the results of one experiment. In this exam-
ple, a goal hold was selected at a distance of eight one-step motions from the
robot’s initial stance. Results of multi-step planning were averaged over 100
runs at each Tmax. (In our experiments, it was convenient to bound Tmax im-
plicitly, e.g., by bounding numbers of iterations – therefore, results are given
with respect to mean planning time rather than Tmax in Fig. 7.)

Both total path length and the ratio of edges to nodes in the graph asymp-
totically reach minimum and maximum values, respectively, as Tmax is in-
creased. This trend arises because the structure of the graph is approximated
increasingly well (i.e., components of each Fσ are better explored, and fea-
sible one-step motions are found with higher probability). It also indicates
why total planning time approaches linear growth with Tmax – the number
of nodes and edges explored in the multi-step search becomes constant.
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Fig. 7. Performance of a basic multi-step search using PRM, as the average time
allowed for continuous expansion is varied. Mean values (over many runs) are shown;
bounds are dotted lines. (a) Total planning time. (b) Probability of success. (c)
Total number of one-step motions in the final path. (d) Ratio of edges to nodes.

4.4 Proposed modifications

There are a number of important modifications we intend to make to our
planner in order to improve its performance (e.g., the use of graph search
heuristics, and a “lazy” approach to checking the feasibility of edges). How-
ever, as shown by our baseline results, a fundamental problem that still must
be addressed is to determine when one-step motions are infeasible. We pro-
pose a possible, general method for doing so in the following section.

We intend to apply our “disconnection planner” as follows: given each
one-step motion query, our sample-based planner will be allowed to run for
a short length of time, say 1.0 s. As shown in Fig. 6, many feasible one-step
motions will be found immediately. When the one-step planner is unable
to find a solution, we will attempt to prove that the motion is infeasible.
This will eliminate a large number of infeasible queries quickly. Finally, if
no disconnection proof is found, we allow our one-step planner a further
amount of time Tmax sufficient to find feasible one-step motions with high
probability. In this way, the fraction of queries processed for time Tmax will
be significantly reduced.
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5 Proving One-Step Disconnection

5.1 General approach

Our goal is to show that no feasible, continuous path exists between two
configurations qs, qg ∈ Fσ. One way of establishing such a “disconnection
proof” is to construct a manifold embedded in the infeasible space Cσ − Fσ

that separates qs and qg. Such a manifold can be defined as the zero-level-set
of a continuous, scalar-valued function g : Cσ → R such that g(qs) > 0 and
g(qg) < 0, where we require that {q ∈ Fσ| g(q) = 0} is empty. The value of g
must be zero at some configuration qi along any continuous path between qs

and qg, but by definition any such qi is infeasible. Therefore, the function g
is a proof that no feasible, continuous path exists between qs and qg.

This approach need not involve the construction of a complete roadmap
for Fσ. Indeed, it turns a question about the existence of paths into a ques-
tion about the feasibility of sets. In certain cases, the latter computation can
be done quickly. In this section, we propose a method that applies to the case
where Fσ is expressed as a semialgebraic set. We do not suggest the use of
exact arithmetic – instead, our method is based on a hierarchy of Positivstel-
lensatz refutations, each of which can be computed as a semidefinite program
(a result from the fields of convex optimization and real algebra [27,28]).

5.2 Theoretical foundation

Problem statement. Assume the feasible space Fσ can be represented as a
semialgebraic set. (An over-approximation F̂σ of Fσ is sufficient. If Fσ ⊂ F̂σ,
then empty {q ∈ F̂σ| g(q) = 0} implies empty {q ∈ Fσ| g(q) = 0}.) So, it can
be represented as the following subset of an n-dimensional Euclidean space
Rn, where all fi, hj ∈ R[x1, . . . , xn] are polynomials:

Fσ =

{
x ∈ Rn

∣∣∣∣∣ fi(x) ≥ 0 i = 1, . . . ,mf

hj(x) = 0 j = 1, . . . ,mh

}
(1)

The disconnection problem is to find a polynomial function g ∈ R[x1, . . . , xn]
such that g(qs) > 0, g(qg) < 0, and the following set Pcut(g) is empty:

Pcut(g) =

x ∈ Rn

∣∣∣∣∣∣∣
fi(x) ≥ 0 i = 1, . . . ,mf

hj(x) = 0 j = 1, . . . ,mh

g(x) = 0

 (2)

This problem involves two basic challenges. First, given a function g, we
must be able to check that Pcut(g) is empty. Second, we must be able to
search for such a function g.
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Proving that Pcut(g) is empty. A general strategy for showing the infea-
sibility of Pcut(g) is to assume feasibility and derive a contradiction. When
Fσ is semialgebraic, it is natural to begin with the hypothesis that there ex-
ists x0 ∈ Pcut(g) and try to infer a false conclusion such as −1 ≥ 0. This is
automated proof by contradiction, using algebra to perform inference.

For example, consider a feasible space Fσ defined by the single inequality
f1(x) = x2 − 1, so Fσ = (−∞,−1] ∪ [1,∞) ⊂ R. To separate points qs = 2,
qg = −2, we could use the function g(x) = x, which defines a manifold that
is the single point {0}. We have g(qs) = 2 > 0 and g(qg) = −2 < 0, so all
that remains is to show that Pcut(g) is empty. But by definition, f1 ≥ 0 and
g = 0 on Pcut(g), so by inference −1 = f1 + (−x) · g = f1 + (−x) · 0 = f1 ≥ 0
on Pcut(g), so if Pcut(g) is nonempty we have a contradiction.

In fact, there is a systematic way to search for such a contradiction. The
set of all polynomials that can be inferred from fi ≥ 0 ∀i to be nonnega-
tive on Pcut(g)) is called the cone generated by f1, . . . , fmf

, and is denoted
cone{f1, . . . , fmf

}. Equivalently, the set of all polynomials that can be in-
ferred from hj = 0 ∀j and g = 0 to be zero on Pcut(g) is called the ideal
generated by h1, . . . , hmh

, g, and is denoted ideal{h1, . . . , hmh
, g}. The Pos-

itivstellensatz [33] states that Pcut(g) is empty if and only if

−1 ∈ cone{f1, . . . , fmf
}+ ideal{h1, . . . , hmh

, g} (3)

As described in [6], the cone and the ideal can be parameterized so (3) is
exactly equivalent to the existence of polynomials r and ti and sum-of-squares
polynomials s0, si, sij , . . . , (all of arbitrary degree) such that the following
algebraic equation holds (note that the series does terminate):

−1 =

s0 +
mf∑
i=1

sifi +
mf∑
i=1

mf∑
j=1

sijfifj + . . .

+

(
mh∑
i=1

tihi + rg

)
(4)

Recently, it has been shown that for fixed degree r, ti, and s0, si, sij , . . . ,
the feasibility of (4) can be checked by solving an SDP [27]. The basic idea is
to search over the coefficients of these polynomials, restricting the coefficients
of s0, si, sij , . . . , to lie within the positive semidefinite cone. This approach
allows the use of floating-point computation, rather than exact algebraic ma-
nipulation. A hierarchy of checks is also possible, with polynomial multipliers
of higher and higher degree, in which each SDP is a better approximation
of the “only if” condition of (4). However, the SDP’s become significantly
larger and more costly to compute. In practice, a degree is usually fixed (in
our experiments, low degree certificates have been sufficient).

Searching for a function g. In some cases good candidate functions g are
already available. In fact, this is true for the climbing robot problem, where
Fσ is often disconnected across manifolds corresponding to θ2 = 0 in one limb
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(i.e., a straight-limb configuration). If candidates are not available, directly
incorporating the search for g into the SDP computation (4) is problematic.

However, there is a duality theory associated with the Positivstellensatz
and its corresponding SDP’s [23]. This means that if both primal (connection)
and dual (disconnection) searches are conducted in parallel, information from
each can be used to help the other (also as suggested in [4]). For example,
if Pcut(g) is not empty, there must exist some feasible configuration qf ∈
Pcut(g). This can be used to direct the primal search – if the primal algorithm
is sample-based, samples can be drawn from a distribution around nonempty
Pcut(g). Likewise, candidate functions g can be postulated by fitting hyper-
surfaces to infeasible sampled configurations qi /∈ Fσ.

5.3 Preliminary application

To test how this algebraic method might be applied, we used it to prove that
the feasible space at the 4-hold stance σ in the last frame of Fig. 3 has at
least two components. In this example, Fσ can be separated along a manifold
corresponding to θ2 = 0 for the bottom-left limb. So we can prove that no
continuous path exists between any qs at which θ2 > 0 and any qg at which
θ2 < 0 in this limb.

The feasible space Fσ is over-approximated by considering only the closed-
chain and joint-angle constraints. There are a variety of possible parameteri-
zations to express Fσ as a semialgebraic set; the choice is important, since it
may result in different numbers of variables, numbers of constraints, or total
polynomial degrees of the constraints. In this case it is convenient to use vari-
ables xmi, ymi and xsi, ysi defining the locations of the elbow and shoulder
joints, respectively, of each limb i.

Equality constraints hj are introduced to enforce the spatial relationship
between joints and the closed-chain constraint between the supporting holds.
Inequality constraints fi are used to enforce the joint-angle limits, which can
be represented as minimum distances between joints. The function g can
be expressed implicitly by constraining the shoulder of the bottom-left limb
to be a fixed distance (corresponding to θ2 = 0) from its supporting hold.
After eliminating redundancy, the set Pcut(g) can be defined by 8 equality
constraints and 11 inequality constraints, in 10 variables.

A certificate of the form (4) with fixed total degree 4 (i.e., a proof that
no path exists in Fσ that crosses θ2 = 0 in the bottom-left limb) was found
in 90.0 s on a 1GHz PowerPC G4. Our current implementation is still not
fast enough to be practical (e.g., compare with the planning times we pre-
sented in Section 4.3). However, we have generated much faster (less than
1.0 s) disconnection proofs for a variety of simpler systems, including a 3-
limbed planar robot. We hope to reduce the running time for this application
by better exploiting the sparsity of the SDP’s (e.g., [28]). Many other such
improvements may be possible – this is ongoing work.
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6 Future Work

This paper presented a framework for non-gaited, multi-step motion planning
for free-climbing robots. Based on experimental results, it showed the need
to detect when one-step motions are infeasible (i.e., to prove disconnection).
It also presented current work on the development of a general method for
doing so, based on advances in computational real algebra.

Other challenging problems remain to be addressed – sensing, grasping,
and control are prominent among them. For example, here a pre-surveyed
model of the terrain was assumed. With only local sensing, the robot will have
to explore the environment incrementally, and plan based on incomplete or
uncertain information. Also, there are many unanswered questions raised by
our treatment of the disconnection problem. Work on exact motion planning
has provided important insight, but to date, few practical algorithms. The
use of floating-point computational tools, rather than exact arithmetic, could
make it possible to implement some of these algorithms more efficiently.
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