Skip to main content

Self-Tuning Fuzzy Rule Bases with Belief Structure

  • Chapter
  • First Online:
Intelligent Data Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 5))

Abstract

A fuzzy rule-based evidential reasoning (FURBER) approach has been proposed recently, where a fuzzy rule-base designed on the basis of a belief structure (called a belief rule base) forms a basis in the inference mechanism of FURBER. This kind of rule-base with both subjective and analytical elements may be difficult to build in particular as the system increases in complexity. In this paper, a learning method for optimally training the elements of the belief rule base and other knowledge representation parameters in FURBER is proposed. This process is formulated as a nonlinear multi-objective function to minimize the differences between the output of a belief rule base and given data. The optimization problem is solved using the optimization tool provided in MATLAB. A numerical example is provided to demonstrate how the method can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Da Ruan Guoqing Chen Etienne E. Kerre Geert Wets

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Liu, J., Ruan, D., Yang, JB., Martinez Martinez, L. Self-Tuning Fuzzy Rule Bases with Belief Structure. In: Ruan, D., Chen, G., E. Kerre, E., Wets, G. (eds) Intelligent Data Mining. Studies in Computational Intelligence, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11004011_21

Download citation

  • DOI: https://doi.org/10.1007/11004011_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26256-5

  • Online ISBN: 978-3-540-32407-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics