Abstract
We present an algorithm for the multi-robot simultaneous localization and mapping (SLAM) problem. Our algorithm enables teams of robots to build joint maps, even if their relative starting locations are unknown and landmarks are ambiguous—which is presently an open problem in robotics. It achieves this capability through a sparse information filter technique, which represents maps and robot poses by Gaussian Markov random fields. The alignment of local maps into a single global maps is achieved by a tree-based algorithm for searching similar-looking local landmark configurations, paired with a hill climbing algorithm that maximizes the overall likelihood by search in the space of correspondences. We report favorable results obtained with a real-world benchmark data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thrun, S., Liu, Y. (2005). Multi-robot SLAM with Sparse Extended Information Filers. In: Dario, P., Chatila, R. (eds) Robotics Research. The Eleventh International Symposium. Springer Tracts in Advanced Robotics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11008941_27
Download citation
DOI: https://doi.org/10.1007/11008941_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23214-8
Online ISBN: 978-3-540-31508-7
eBook Packages: EngineeringEngineering (R0)