
HAL Id: hal-01015921
https://hal.science/hal-01015921

Submitted on 27 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-resolution SLAM for Real World Navigation
Agostino Martinelli, Adriana Tapus, Kai Arras, Roland Y. Siegwart

To cite this version:
Agostino Martinelli, Adriana Tapus, Kai Arras, Roland Y. Siegwart. Multi-resolution SLAM for
Real World Navigation. Paolo Dario ; Raja Chatila. Robotics Research. The Eleventh International
Symposium, Springer, pp.442-452, 2005, Springer Tracts in Advanced Robotics, 978-3-540-23214-8.
�10.1007/11008941_47�. �hal-01015921�

https://hal.science/hal-01015921
https://hal.archives-ouvertes.fr


Proceedings of the International Symposium of  

Research Robotics  

Siena, Italy, October 2003  

 

 

 

 

 

 

 

Multi-resolution SLAM for Real World 

Navigation 
 

 

Agostino Martinelli, Adriana Tapus, Kai Olivier Arras, 

and Roland Siegwart 

 

Autonomous Systems Lab 

Swiss Federal Institute of Technology Lausanne (EPFL) 

CH-1015 Lausanne 



Multi-resolution SLAM for Real World Navigation 
 

 
Agostino Martinelli, Adriana Tapus, Kai Olivier Arras, and Roland Siegwart 
 

Autonomous Systems Lab, Swiss Federal Institute of Technology Lausanne (EPFL), 

CH-1015 Lausanne 
 

Abstract 

 
In this paper a hierarchical multi-resolution approach allowing for high precision and 

distinctiveness is presented. The method combines topological and metric paradigm. The 

metric approach, based on the Kalman Filter, uses a new concept to avoid the problem of 

the drift in odometry. For the topological framework the fingerprint sequence approach is 

used. During the construction of the topological map, a communication between the two 

paradigms is established. The fingerprint used for topological navigation enables also the 

re-initialization of the metric localization. The experimentation section will validate the 

multi-resolution-representation maps approach and presents different steps of the method. 
 

1 Introduction  
 

Many methods have been proposed to represent an environment in the framework 

of autonomous navigation, from precise geometric maps based on raw data or 

lines up to purely topological maps using symbolic descriptions. Each of these 

methods is optimal concerning some characteristics but can be very disappointing 

with respect to other requirements. In particular, none of them is able to cope with 

the large variety of environments that humans encounter in their daily live.  

 

Hierarchical Multi-Resolution maps 

Most current approaches make a trade-off between precision and global 

distinctiveness. Precision and distinctiveness have a strong link with the level of 

abstraction of the features used for navigation (fig. 1). Raw data represent the 

lowest level in the hierarchy of abstraction. Localization and mapping with raw 

data can result in very high precision of the represented environment, but the 

required data volume scales very badly with the size of the environment and the 

distinctiveness of the individual data points is very low. An example of such a 

approach is Markov localization [9, 15]. The second level of abstraction 

corresponds to the geometric features (lines, edges). The stochastic map technique 

to SLAM [6, 8, 14] and the multi-hypothesis localization [3] are typical examples 

belonging to this level. These approaches still feature high precision with reduced 

memory requirements, but have shortcomings concerning global distinctiveness 

and unmodeled events. Partially geometric features correspond to the third level of 

the hierarchy. Representations using partially geometric features are for examples 

fingerprints (a sequence of low level features) described in [12,13], but also more 

bio-inspired approaches [1, 5, 10] using neural networks, e.g. the work by Hafner 

[10] uses a neural network to create a topological map of the environment based 



on images of an omni-directional camera. On the highest abstraction level the 

environment is represented by a symbolic description. This can be very compact 

and distinctive, but reliable tools for extraction of high level features are still 

missing.  

The aim of the present work is to suggest and discuss a multilevel representation 

approach for robust and compact environment representation. This is realized by 

integrating different level of abstraction and representations in a common 

navigation framework. For example, to get from the airport to a given room in a 

hotel, maps of the city streets and of the hotel are necessary. Clearly, these maps 

are on different scales and different representations (e.g. metric/topological). A 

crucial point is then the linkage between two maps of different resolution. In the 

multi-level representation we propose, the mobile robot uses the most suitable 

level of abstraction, depending on the task it has to accomplish and the certainty 

about its pose. Moreover, depending on the actual situation, it has to be able to 

switch from one level to another one (see figure 1). 

In this paper we will discuss the possibility to integrate most recent results in 

mobile robot navigation in a multi-level hierarchical representation and we will 

present our first attempts towards multi-resolution, multi-representation maps.  
 

2 First attempt for a multi-resolution Map 
  

2.1 Metric Mapping based on a Relative Map Filter 
 

In this section we introduce a new approach to solve the SLAM problem in the 

framework of the stochastic map based on the concept of the relative map. The 

aim of this method is to minimize the loop consistency problem (i.e. the global 

convergence and consistency of the built map in large environment - large 

meaning when the size of the environment is much larger than the range of the 

adopted external sensor). Clearly, even with this approach the problem of the 

consistency of the built map cannot be completely solved and therefore, for very 

 
Fig. 1.  This figure depicts the hierarchy of abstraction levels. More we go up in the 

hierarchy, more we reduce the geometric information and more we increase the 

distinctiveness. For global localization and mapping, high distinctiveness is of importance, 

whereas for local action, precise geometric relations with the environment come forward. 



large environment, it is necessary to combine the metric approach with a 

topological approach (see the next sections) and several local maps give the global 

metric description. However, the relative map introduced here increases the 

convergence properties of the map with respect to the standard approach since the 

convergence of the map built following the standard approach [8] requires 

infeasible hypothesis (odometry perfectly modelled and linearity of the 

observation in the estimated state (see [8] for details)). 

The basic idea consists of introducing a map state, which only contains 

quantities invariant under translations and rotations. This is the only way in order 

to have an actual decoupling between the robot and the landmark estimation and 

therefore to do not rely the landmark estimation on the unmodeled error sources in 

the robot motion. Once a relative map is estimated and the absolute location of a 

set of landmarks is known (e.g. by using the first observation) it is possible to 

build the absolute map. Therefore, the entire method contains two algorithms. The 

former estimates the relative map, the latter builds the absolute map. Only the case 

of point landmark is here considered, although the same idea could be applied to 

other kind of landmark. In the sections 2.1.1 and 2.1.2 respectively we describe 

the two algorithms. 
  

2.1.1 The Relative Map Filter 
 

The state estimated through this filter only contains the distances between the 

point landmarks. Clearly, the distance is a quantity invariant under translation and 

rotation, i.e. it is independent of the robot configuration. 

Let denote with d the state and with P its covariance matrix. In Fig 2a the vector 

d contains the marked distances between the 6 landmarks. Clearly, not all of the 

distances between the 6 landmarks are stored in d because not all the landmarks 

were observed together at the same time. At a given time step, the observation 

consists of a set of distances between the landmarks observed by the robot through 

its external sensor (Fig 2b). Clearly, these distances may be already observed (i.e. 

can be in the vector d) or may not. Let introduce the following notation: 
 

dold=[u, wold]
T        dobs=[wobs, v]T              (1) 

 

where dold  is the state estimated at a given time step and dobs is the observation at 

the same time step, containing a set of distances between the landmarks observed 

by the robot. u contains the distances which are not re-observed (i.e. which do not 

appear in the vector dobs) and wold  contains the distances re-observed (denoted by 

wobs in the vector dobs). Finally, v, contains the distances observed for the first time 

at the considered time step. 

The covariance matrix of the previous vectors are: 
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We adopt the following notation to denote the estimated quantities, obtained by 

fusing the old state with the observed one (the new estimated distances are 

depicted in Fig2c). 
dnew=[unew, wnew, vnew]T                            (3) 

 

We obtain the new estimation for the state and its covariance matrix by applying 

the equations of the Kalman filter. 
 

unew = u + Puw (Pww + Rww)-1(wobs – wold)   (5) 

wnew = wold + Pww (Pww + Rww)-1(wobs – wold)   (6) 

vnew = v + Rvw (Pww + Rww)-1(wold – wobs)      (7) 

Pnuu = Puu – Puw (Pww + Rww)-1 Pwu    (8) 

Pnuw = Puw – Puw (Pww + Rww)-1 Pww    (9) 

Pnuv = 0    (10) 

Pnww = Pww – Pww (Pww + Rww)-1 Pww    (11) 

Pnwv = Rwv – Rww (Pww + Rww)-1 Rwv    (12) 

Pnvv = Rvv – Rvw (Pww + Rww)-1 Rwv    (13) 
 

2.1.2 Recovering the Absolute Landmark Location 
 

We adopt a simple linear method to recover the absolute landmark locations 

starting from the absolute location of three or more landmarks and the state 

estimated by the previous filter, which contains the distances between the 

landmarks. At a given time step the absolute locations of a set of landmarks are 

available (we assumed that the absolute coordinates of at least three landmarks are 

known at the beginning; these coordinates could be provided by the first 

observation). The aim is to estimate the location of a new landmark denoted by j. 

We extract from the previous set a subset containing the landmarks whose 

distance from the landmark j is provided by the relative filter. Let denote the 
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Fig. 2.  Relative Map before the observation (a), the observation (b), and the relative map 

obtained by fusing the information coming from the old map and the observation (c). In all 

the three figures the map state only contains the indicated distances between the landmarks 



locations of these landmarks by (xi, yi) and the distance between the landmark j 

and the landmark i of this subset by di. We assumed that the number of the 

elements of this subset is equal to n. If n<3 the absolute location of the landmark j 

cannot be provided. Clearly, we have for the landmark i 

 

di
2= (xj-xi)

 2+(yj-yi)
 2    (14) 

 

We therefore obtain a linear system in the unknowns xj and yj by considering all 

the differences di
2 - d1

2. By applying recursively this method for all the landmarks 

(all j) it is possible to get their absolute location 
 

2.2 Topological Map 
 

The topological approach tries to give a compact representation since only 

distinctive places within the environment are encoded. One of the main problems 

of this method is the perceptual aliasing (i.e. distinct locations within the 

environment appearing identical to the robot’s sensors). In order to be capable to 

eliminate the perceptual aliasing problem, the distinctiveness of the space must be 

improved. To maximize the reliability in navigation, the information from all the 

sensors that are available to the robot must be used. To solve this problem the 

notion of fingerprint as described in [12, 13] is used. This characterization of the 

environment is especially interesting when used within a topological localization 

and multiple modalities framework.  A fingerprint is a circular list of features, 

where the ordering of the set matches the relative ordering of the features around 

the robot. We denote the fingerprint sequence using a list of characters, where 

each character represents the instance of a specific feature type. In our case we 

choose to extract color patches and vertical edges from visual information and 

corners and beacons from laser scanner. We decided to use the letter ‘v’ to 

characterize an edge, the letters A,B,C,...,P to represent hue bins, the letter ‘c’ to 

characterize a corner feature and the letter ‘b’ to characterize a beacon feature. 

Details about the visual features extraction can be found in [13] and laser scanner 

features extraction can be found in [4]. 
 

2.2.1 Fingerprints matching for localization 
 

The string-matching problem is not an easy one. Usually strings don’t match 

exactly because the robot may not be exactly located on a map point and/or some 

changes in the environment or perception errors occurred. The standard algorithms 

are quite sensitive to insertion and deletion errors, which cause the string lengths 

to vary significantly. 
 

Minimum energy algorithm 

The approach adopted for sequence matching is inspired by the minimum energy 

algorithm used in stereo-vision for finding pixels in two images that correspond to 

the same point of a scene [11]. As in the minimum energy case, the problem can 

be seen as an optimization problem, where the goal is to find the path that spends 

the minimum energy to go from the beginning to the end of the first sequence 



considering the values of the second one. The similarity between two sequences is 

given by the resulting minimum energy of traversal.  
 

2.2.2 Fingerprint generation 
 

The fingerprint generation is done in three steps (see Fig. 3). The first step consists 

in extracting the different features from the panoramic image and the laser scan: 

vertical edges, patches of colors, corners and beacons. The features are arranged in 

an array along with their corresponding position (from 0 to 359 degrees). At this 

stage a new type of feature that reflects a correspondence between a corner and an 

edge: the feature ‘f’, is introduced, more details can be found in [13]. The ordering 

of the features in a fingerprint sequence is highly informative and for that reason 

the notion of angular distance between two consecutive features will be added. 

This adds geometric information and increases once again the distinctiveness 

between the fingerprints. Therefore, we decided to introduce a new type of feature, 

the empty space feature ‘n’, for reflecting angular distance. Each ‘n’ covers the 

same angle of the scene (20 degrees). So, as many empty spaces as needed must 

be inserted in order to fill the gap between two consecutive features. This insertion 

is the last step of the fingerprint generation. 
 

 

(c) 

(a) 

(b) 

 
Fig. 3.  Fingerprint generation. (a) panoramic image with the vertical edges and color 

patches detection ‘v’ and color (b) laser scan with extracted corners ‘c’ and beacons ‘b’ (c) 

the first three images depict the position (0 to 360°) of the vertical edges, the corners, the 

beacons and the colors (G-green, E-light green, and A-red)  respectively. The fifth image 

describes the correspondence between the vertical edges features and the corner features. 

By regrouping all this results together and by adding the empty space features, the final 

fingerprint is:  cbccbnfGcnEnvccncbcvncnnfvvvnccAcb 



2.3 Multi-resolution Map 
 

Our approach combines low-level feature for local metric and fingerprints for 

global topological localization and mapping.  Indeed, the combination of these two 

levels of abstraction is necessary, because the consistency in large environments 

with stochastic maps is impossible. The relative map approach described in 

Section 2.1 increases the convergence property. The estimation does not rely on 

the odometry and therefore on the unmodeled events in the robot motion. 

However, this method fails when the unmodeled events (e.g. strong collision) are 

strong enough to cause error in data association. Clearly, the stochastic maps 

completely fail when there is a kidnapping during the motion.  

The main problem that arises when there are several levels of abstraction is the 

switching between the levels. In our case, this appears when we switch from 

topological to metric. In order to deal with the switching problem, we introduce a 

new element in the fingerprint approach. The new fingerprint contains the 

fingerprint as illustrated in Section 2.2, and the local coordinates of the 

correspondent beacons as appearing in the local metric map. To enable the 

generation of this new fingerprint, a communication between the two levels of 

abstraction is required.  

When a kidnapping is performed, in order to find the new location of the robot, 

the fingerprint approach will be used. Once the location is found, the association 

between the local coordinates of the beacons (contained in the matched 

fingerprint) and the observed fingerprint is done. In this way the re-initialization of 

the metric navigation is accomplished. This multi-representation approach enables 

SLAM on two levels of abstraction, thus featuring precision and global 

consistency. A similar concept can be found in [16]. 
  

3 Experimental Results 
 

For the experiments, Donald Duck (see Fig. 4a), a fully autonomous mobile 

robot, has been used. 

 

 
 a)  b) 

Fig. 4. System used for experimentation: a) The fully autonomous robot Donald Duck. b) 

The panoramic vision system. The camera has a 640x480 pixels resolution and an 

equiangular mirror is used so that each pixel in the image covers the same view angle 



Table 1. Probabilities for matches between the database fingerprints and the observed 

fingerprints 

Fingerprint Room1 Room2 Room4 

Room1_1 0.72 0.37 0.50 

Room1_2 0.57 0.64 0.39 

Room1_3 0.61 0.66 0.44 

Room2_1 0.51 0.69 0.38 

Room2_2 0.49 0.92 0.48 

Room2_3 0.39 0.82 0.49 

Room4_1 0.42 0.48 0.65 

Room4_2 0.56 0.32 0.79 

Room4_3 0.49 0.58 0.55 

 

The robot is equipped with wheel encoders, a 360° laser range finder and an 

omnidirectional camera. The panoramic vision system depicted in figure 4b uses a 

mirror-camera system to image 360° in azimuth and up to 110° in elevation. The 

use of an omnidirectional camera combines the advantages of the SICK laser 

range finder (e.g. an angle of view of 360°) and the capability of detecting 

verticals. Twenty-two beacons were placed in the environment. They could be 

detected by the laser sensor with an accuracy of around 5 cm. There were adopted 

to create the point landmarks mentioned in section 2. Clearly, instead of them a 

function able to extract corners from laser scanner could be used. 
 

Metric Map 

Figure 5 shows the metric map obtained through the relative map filter described 

in the section 2.1.1. The robot visited three rooms and estimated at each time step 

its configuration and the positions of the 22 beacons in the environment. Since the 

odometry was completely decoupled by the estimation process (as explained in the 

section 2.1) there is not any drift in the built map and in particular it was possible 

to adopt a unique global metric map. During the experiment the odometry data 

were only used to solve the data association problem and not in the estimation 

process. The initial robot configuration coincides with the origin of the global 

reference whose axis were chosen coincident with the axis of the robot at the 

initial time. The grey line shows the robot trajectory computed by using the same 

algorithm described in the section 2.1.1 and the symbol ‘O’ is adopted to indicate 

the absolute beacon position. 
 

Topological map 

In order to validate the fingerprint approach, for each of the four rooms (see 

Figure 5), a fingerprint has been extracted. This experiment has been repeated six 

times for each room, and the fingerprint has been extracted in different locations 

of the room. Three fingerprints per room have been included in a database as 

reference (map). The others 12 fingerprints (3 per room) have been matched to the 

database for testing the localization. For a given observation (fingerprint), a match 

is successful if the best match with the database (highest probability) corresponds 

to the correct room. For our experiments the match was successful for all the test 

fingerprints and the correct room has always been found with the highest 

probability, a probability going from 0.67 to 0.92. 



 
 

Fig. 5.  Local map of the environment with the way traversed by the robot, with the 

numeroted seen beacons and with the estimated metric position ‘*’ 

Kidnapping and metric re-initialization 

Three kidnapping were performed, respectively in Room1, Room2 and Room4 

(see figure 5). In the Table 1 the results of the matching algorithm presented in 

Section 2.2.1, are normalized to have a probability (between 0 and 1). As it can be 

seen the correspondence between the real location and the observed one is always 

found with a high probability. 

Concerning the metric re-initialization, the results are showed in the figure 5, and 

the estimated robot positions are indicated with symbol ‘*’. 

The error between the metric position that have been found and the real position of 

the robot is very small, the error going from 1 to 4 cm. 

4 Conclusion and Outlook 
 

This paper presented a multi-level hierarchical representation. The new approach 

depicted combines metric and topological concept. The two paradigms are on two 

different levels of abstraction. This kind of representation allows a very compact 

and computationally efficient representation of the environment for mobile robot 

navigation. The results of our first attempts towards multi-resolution maps showed 

the robustness of the approach. Future works will focus on experiments in large 

environments, on the introduction of an average fingerprint instead of several 

fingerprints for each node, on a probabilistic fingerprint-matching concept, on an 

automatic generation of nodes and on the extension of the relative map filter to 

line landmark.  
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