Abstract
This paper presents a novel scale space approach to obtain a deformation which matches two images acquired from the same or from different medical imaging modalities. The image registration problem is known to be mathematically ill-posed due to the fact that determining the unknown components of the displacements merely from the images is an underdetermined problem. The approach presented here utilizes an auxiliary regularization term, which favors displacements with minimal curvature surface. One of the important aspects of this approach is that the kernel of the Euler-Lagrange equation is spanned by all rigid motions. Hence, the presented approach includes a rigid alignment. A minimizer is determined as the steady-state solution of the Euler-Lagrange equation namely by the biharmonic diffusion equation with higher order boundary conditions. In this framework we give a new interpretation of the underlying regularization parameter α. Finally, we present experimental results for registration problems of a Magnetic Resonance Imaging (MRI) (monomodal) registration and for a real computer tomography (CT)–magnetic resonance imaging (multimodal) registration.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Henn, S., Witsch, K.: A multigrid-approach for minimizing a nonlinear functional for digital image matching. Computing 64(4), 339–348 (1999)
Aubert, G., Deriche, R., Kornprobst, P.: Computing optical flow via variational techniques. SIAM J. Appl. Math. 60(1), 156–182 (1999)
Clarenz, U., Droske, M., Henn, S., Rumpf, M., Witsch, K.: Computational methods for nonlinear image registration. In: Image Registration, European Consortium for Mathematics in Industry, ECMI 2004 (2004) (to appear)
Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15, 207–224 (1994)
Fischer, B., Modersitzki, J.: Fast inversion of matrices arising in image processing. Numerical Algorithms 22, 1–11 (1999)
Henn, S., Witsch, K.: Multi-modal image registration using a variational approach. SIAM J. Sci. Comput. (SISC) 25(4), 1429–1447 (2004)
Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1, 35–51 (1996)
D’Agostino, E., Modersitzki, J., Maes, F., Vandermeulen, D., Fischer, B., Suetens, P.: Free-form registration using mutual information and curvature regularization. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 11–20. Springer, Heidelberg (2003)
Hermosillo, G.: Variational methods for multimodal image matching. Phd thesis, Université de Nice, France (2002)
Cattermole, K.: Statistische Analyse und Struktur von Information. VCH (1988)
Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)
Fischer, B., Modersitzki, J.: Curvature based image registration. JMIV 18, 81–85 (2003)
Hackbusch, W.: Elliptic Differential Equations. Theory and Numerical Treatment. Springer Series in Computational Mathematics, vol. 18. Springer, Heidelberg (1992)
Henn, S.: Multigrid method for fourth-order diffusion equation. Preprint (2004)
Henn, S., Witsch, K.: Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. (SISC) 23(4), 1077–1093 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Henn, S., Witsch, K. (2005). A Variational Image Registration Approach Based on Curvature Scale Space. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_13
Download citation
DOI: https://doi.org/10.1007/11408031_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)