Abstract
The decomposition of motion vector fields into components of orthogonal subspaces is an important representation for both the analysis and the variational estimation of complex motions. Common finite differencing or finite element methods, however, do not preserve the basic identities of vector analysis. Therefore, we introduce in this paper the mimetic finite difference method for the estimation of fluid flows from image sequences. Using this discrete setting, we represent the motion components directly in terms of potential functions which are useful for motion pattern analysis. Additionally, we analyze well-posedness which has been lacking in previous work. Experimental results, including hard physical constraints like vanishing divergence of the flow, validate the theory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amodei, L., Benbourhim, M.N.: A vector spline approximation. J. Approx. Theory 67(1), 51–79 (1991)
Suter, D.: Motion estimation and vector splines. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, June 1994, pp. 939–942. IEEE Computer Society Press, Los Alamitos (1994)
Gupta, S., Prince, J.: Stochastic models for div-curl optical flow methods. Signal Proc. Letters 3(2), 32–34 (1996)
Corpetti, T., Mémin, É., Pérez, P.: Dense motion analysis in fluid imagery. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 676–691. Springer, Heidelberg (2002)
Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)
Corpetti, T., Mémin, E., Pérez, P.: Extraction of singular points from dense motion fields: an analytic approach. J. of Math. Imag. Vision 19(3), 175–198 (2003)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Heidelberg (1986)
Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)
Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)
Hyman, J.M., Shashkov, M.J.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)
Hyman, J.M., Shashkov, M.J.: The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36(3), 788–818 (1999) (electronic)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)
Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)
Xu, J.: Iterative methods by space decomposition and subspace correction: A unifying approach. SIAM Review 34, 581–613 (1992)
Tai, X.-C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comp. 71(237), 105–124 (2002) (electronic)
Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1995) (1999)
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yuan, J., Ruhnau, P., Mémin, E., Schnörr, C. (2005). Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_23
Download citation
DOI: https://doi.org/10.1007/11408031_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)