Abstract
Variational methods are very popular for optic flow computation: They yield dense flow fields and perform well if they are adapted such that they respect discontinuities in the image sequence or the flow field. Unfortunately, this adaptation results in high computational complexity. In our paper we show that it is possible to achieve real-time performance for these methods if bidirectional multigrid strategies are used. To this end, we study two prototypes: i) For the anisotropic image-driven technique of Nagel and Enkelmann that results in a linear system of equations we derive a regular full multigrid scheme. ii) For an isotropic flow-driven approach with total variation (TV) regularisation that requires to solve a nonlinear system of equations we develop a full multigrid strategy based on a full approximation scheme (FAS). Experiments for sequences of size 160 × 120 demonstrate the excellent performance of the proposed numerical schemes. With frame rates of 6 and 12 dense flow fields per second, respectively, both implementations outperform corresponding modified explicit schemes by two to three orders of magnitude. Thus, for the first time ever, real-time performance can be achieved for these high quality methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A PDE model for computing the optical flow. In: Proc. XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, Las Palmas de Gran Canaria, Spain, pp. 1349–1356 (September 1999)
Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)
Borzi, A., Ito, K., Kunisch, K.: Optimal control formulation for determining optical flow. SIAM Journal on Scientific Computing 24(3), 818–847 (2002)
Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 31(138), 333–390 (1977)
Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optic flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optical flow computation in real-time. IEEE Transactions on Image Processing (2005) (to appear)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61(3), 1–21 (2005) (in press)
Chan, R.H., Chan, T.F., Wan, W.L.: Multigrid for differential-convolution problems arising from image processing. In: Golub, G., Lui, S.H., Luk, F., Plemmons, R. (eds.) Proc. Workshop on Scientific Computing, Hong Kong, September 1997, pp. 58–72 (1997)
Cohen, I.: Nonlinear variational method for optical flow computation. In: Proc. Eighth Scandinavian Conference on Image Analysis, Tromsø, Norway, May 1993, vol. 1, pp. 523–530 (1993)
Deriche, R., Kornprobst, P., Aubert, G.: Optical-flow estimation while preserving its discontinuities: a variational approach. In: Li, S., Teoh, E.-K., Mital, D., Wang, H. (eds.) ACCV 1995. LNCS, vol. 1035, pp. 290–295. Springer, Heidelberg (1996)
El Kalmoun, M., Rüde, U.: A variational multigrid for computing the optical flow. In: Ertl, T., Girod, B., Greiner, G., Niemann, H., Seidel, H.-P., Steinbach, E., Westermann, R. (eds.) Vision, Modelling and Visualization, pp. 577–584. IOS Press, Amsterdam (2003)
Elsgolc, L.E.: Calculus of Variations. Pergamon, Oxford (1961)
Enkelmann, W.: Investigation of multigrid algorithms for the estimation of optical flow fields in image sequences. Computer Vision, Graphics and Image Processing 43, 150–177 (1987)
Frohn-Schnauf, C., Henn, S., Witsch, K.: Nonlinear multigrid methods for total variation denosing. Computating and Visualization in Sciene (2004) (to appear)
Ghosal, S., Vaněk, P.Č.: Scalable algorithm for discontinuous optical flow estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(2), 181–194 (1996)
Glazer, F.: Multilevel relaxation in low-level computer vision. In: Rosenfeld, A. (ed.) Multiresolution Image Processing and Analysis, pp. 312–330. Springer, Berlin (1984)
Hackbusch, W.: Multigrid Methods and Applications. Springer, New York (1985)
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)
Huber, P.J.: Robust Statistics. Wiley, New York (1981)
Kimmel, A., Yavneh, I.: An algebraic multigrid approach for image analysis. SIAM Journal on Scientific Computing 24(4), 1218–1231 (2003)
Kumar, A., Tannenbaum, A.R., Balas, G.J.: Optic flow: a curve evolution approach. IEEE Transactions on Image Processing 5(4), 598–610 (1996)
Luettgen, M.R., Karl, W.C., Willsky, A.S.: Efficient multiscale regularization with applications to the computation of optical flow. IEEE Transactions on Image Processing 3(1), 41–64 (1994)
Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In: Proc. 6th International Conference on Computer Vision, Bombay, India, January 1998, pp. 933–938 (1998)
Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. In: Classics in Applied Mathematics. vol. 30, SIAM, Philadelphia (2000)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Schnörr, C.: Segmentation of visual motion by minimizing convex non-quadratic functionals. In: Proc. Twelfth International Conference on Pattern Recognition, Jerusalem, Israel, October 1994, vol. A, pp. 661–663. IEEE Computer Society Press, Los Alamitos (1994)
Terzopoulos, D.: Image analysis using multigrid relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(2), 129–139 (1986)
Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)
Vogel, C.R.: A multigrid method for total variation-based image denosing. Computation and Control IV 20, 323–331 (1995)
Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision 45(3), 245–264 (2001)
Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14(3), 245–255 (2001)
Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)
Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)
Zini, G., Sarti, A., Lamberti, C.: Application of continuum theory and multi-grid methods to motion evaluation from 3D echocardiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 44(2), 297–308 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C. (2005). Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_24
Download citation
DOI: https://doi.org/10.1007/11408031_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)