Skip to main content

Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

  • 1596 Accesses

Abstract

We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear discriminant classifier (LDA) is employed in the multi-scale feature space. The scale rate of test patterns in their reduced subspace can also be estimated by principal component analysis (PCA). This subspace represents the scale variation of each scale step by principal components of a training texture image. Experimental results show that the proposed method is effective in not only scale invariant texture classification including estimation of scale rate, but also scale invariant segmentation of 2D image for scene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Varma, M., Zisserman, A.: Estimating Illumination Direction from Textured Images. In: Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR 2003), vol. 1, pp. 179–186 (2004)

    Google Scholar 

  2. Turtinen, M., Pietikainen, M.: Visual Training and Classification of Outdoor Textured Scene Images. In: The 3rd international workshop on texture analysis and synthesis, pp. 101–106 (2003)

    Google Scholar 

  3. Pun, C., Lee, M.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans. PAMI (Pattern Analysis and Machine Intelligence) 25(5), 590–602 (2003)

    Article  Google Scholar 

  4. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. PAMI 24(7), 971–987 (2002)

    Google Scholar 

  5. Jain, A.K., Duin, P., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans. PAMI 22(1), 4–37 (2000)

    Google Scholar 

  6. Fisher, R.A.: The Statistical Utilization of Multiple Measurements. Annals of Eugenics 8, 376–386 (1938)

    Google Scholar 

  7. Gibson, J.J.: Perception of the Visual World. HoughtonMifflin, Boston (1950)

    Google Scholar 

  8. Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. J. of Applied Statistics 21(2), 224–270 (1994)

    Google Scholar 

  9. Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. PAMI 12(3), 234–254 (1990)

    Google Scholar 

  10. Goudail, F., Lange, E., Iwamoto, T., Kyuma, K., Otsu, N.: Face Recognition System Using Local Autocorrelations and Multiscale Integration. IEEE Trans. PAMI 18(10), 1024–1028 (1996)

    Google Scholar 

  11. Popovici, V., Thiran, J.: Higher Order Autocorrelations for Pattern Classification. In: International Conference on Image Processing (ICIP), pp. 724–727 (2001)

    Google Scholar 

  12. Kreutz, M., Volpel, B., Janssen, H.: Scale-invariant image recognition based on higher-order autocorrelation features. Pattern Recognition 29(1), 19–26 (1996)

    Article  Google Scholar 

  13. McLaughlin, J., Raviv, J.: Nth-Order Autocorrelations in Pattern Recognition. Information and Control 12, 121–142 (1968)

    Article  MATH  Google Scholar 

  14. Fraleigh, J., Beauregard, R.: Linear Algebra. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  15. Rao, C.R.: The Utilization of Multiple Measurements in Problems of Biological Classification. J. Royal Statistical Soc. ser. B 10, 159–203 (1948)

    MATH  Google Scholar 

  16. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)

    MATH  Google Scholar 

  17. Loog, M., Duin, R., Haeb-Umbach, R.: Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria. IEEE Trans. PAMI 23(7), 762–766 (2001)

    Google Scholar 

  18. Brodatz, P.: Textures: A Photographic Album for Artist and Designers. Dover, New York (1966)

    Google Scholar 

  19. Tsutsui, K., Sakato, H., Naganuma, T., Taira, M.: Neural Correlates for Perception of 3D surface Orientation from Texture Gradient. Science 298, 409–412 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, Y., Morooka, K., Nagahashi, H. (2005). Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_31

Download citation

  • DOI: https://doi.org/10.1007/11408031_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics