Skip to main content

Texture Mapping via Spherical Multi-dimensional Scaling

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

  • 1612 Accesses

Abstract

We present a technique for texture mapping arbitrary sphere-like surfaces with minimal distortions by spherical embedding. The embedding is computed using spherical multi-dimensional scaling (MDS). MDS is a family of methods that map a set of points into a finite dimensional domain by minimizing the difference in distances between every pair of points in the original and the new embedding domains. In this paper spherical embedding is derived using geodesic distances on triangulated domains, computed by the fast marching method. The MDS is formulated as a non-linear optimization problem and a fast multi-resolution solution is derived. Finally, we show that the embedding of complex objects which are not sphere-like, can be improved by defining a texture dependent scale factor. This scale is the maximal distance to be preserved by the embedding and can be estimated using spherical harmonics. Experimental results show the benefits of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arad, M.: Isometric texture mapping for free-form surfaces. Computer Graphics Forum 16, 247–256 (1997), ISSN 1067-7055

    Article  Google Scholar 

  2. Azariadis, P.N., Aspragathos, N.A.: On using planar developments to perform texture mapping on arbitrarily curved surfaces. Computers and Graphics 24, 539–554 (2000)

    Article  Google Scholar 

  3. Neyret, F., Cani, M.P.: Pattern-based texturing revisited. In: SIGGRAPH, pp. 235–242 (1999)

    Google Scholar 

  4. Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 465–470. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  5. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transaction on Medical Imaging 23 (2004)

    Google Scholar 

  6. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Trans. on Visualization and Computer Graphics 6, 181–189 (2000)

    Article  Google Scholar 

  7. Sheffer, A., de Sturler, E.: Parameterization of faceted surfaces for meshing using angle based flattening. Engineering with Computers 17, 326–337 (2001)

    Article  MATH  Google Scholar 

  8. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Computer Graphics 29, 173–182 (1995)

    Google Scholar 

  9. Maillot, J., Yahia, H., Verroust, A.: Interactive texture mapping. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 27–34. ACM Press, New York (1993)

    Chapter  Google Scholar 

  10. Sheffer, A.: Spanning tree seams for reducing parameterization distortion of triangulated surfaces. In: Proceedings of the Shape Modeling International 2002 (SMI 2002), p. 61. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  11. Wolfson, E., Schwartz, E.L.: Computing minimal distances on polyhedral surfaces 11, 1001–1005 (1989)

    Google Scholar 

  12. Schwartz, E.L., Shaw, A., Wolfson, E.: A numerical solution to the generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces 11, 1005–1008 (1989)

    Google Scholar 

  13. Grossman, R., Kiryati, N., Kimmel, R.: Computational surface flattening: A voxel-based approach 24, 433–441 (2002)

    Google Scholar 

  14. Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via MDS. IEEE Trans. on Visualization and Computer Graphics 8, 198–207 (2002)

    Article  Google Scholar 

  15. Wandell, B.A., Chial, S., Backus, B.: Visualization and measurements of the cortical surface. Journal of Cognitive Neuroscience (2000)

    Google Scholar 

  16. Cox, M., Cox, T.: Multidimensional Scaling. Chapman and Hall, Boca Raton (1994)

    MATH  Google Scholar 

  17. Borg, I., Groenen, P.: Modern Multidimensional Scaling - Theory and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  18. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage, Thousand Oaks (1978)

    Google Scholar 

  19. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. of National Academy of Science 95, 8431–8435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Elad, A., Kimmel, R.: Spherical flattening of the cortex surface. In: Malladi, R. (ed.) Geometric Methods in Biomedical Image Processing, pp. 77–90. Springer, Heidelberg (2002)

    Google Scholar 

  21. Hastie, T., Ribshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference and prediction. Springer, Heidelberg (2002)

    Google Scholar 

  22. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  23. Sethian, J.: A review of the theory, algorithms, and applications of level set method for propagating surfaces. In: Acta Numerica. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  24. Gill, P.: Practical Optimization. Academic Press, London (1982)

    Google Scholar 

  25. Mann, S., Picard, R.: Virtual bellows: constructing high quality stills from video. In: IEEE International Conference Image Processing, Austin, TX, pp. 363–367 (1994)

    Google Scholar 

  26. Melax, S.: A simple, fast and effective polygon reduction algorithm. Game Developer Journal (1998)

    Google Scholar 

  27. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elad, A., Keller, Y., Kimmel, R. (2005). Texture Mapping via Spherical Multi-dimensional Scaling. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_38

Download citation

  • DOI: https://doi.org/10.1007/11408031_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics