Abstract
Stabilised backward diffusion processes have shown their use for a number of image enhancement tasks. The goal of this paper is to show that they are also highly useful for designing shock capturing numerical schemes for hyperbolic conservation laws. We propose and investigate a novel flux corrected transport (FCT) type algorithm. It is composed of an advection step capturing the flow dynamics, and a stabilised nonlinear backward diffusion step in order to improve the resolution properties of the scheme. In contrast to classical FCT procedures, we base our method on an analysis of the discrete viscosity form. This analysis shows that nonlinear backward diffusion is necessary. We employ a slope limiting type approach where the antidiffusive flux determined by the viscosity form is controlled by a limiter that prohibits oscillations. Numerical experiments confirm the high accuracy and shock capturing properties of the resulting scheme. This shows the fruitful interaction of PDE-based image processing ideas and numerical analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Num. Math. 31, 590–605 (1994)
Boris, J.P., Book, D.L.: Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comp. Phys. 11(1), 38–69 (1973)
Boris, J.P., Book, D.L., Hain, K.: Flux corrected transport II: Generalizations of the method. J. Comp. Phys. 18, 248–283 (1975)
Boris, J.P., Book, D.L.: Flux corrected transport. III. Minimal error FCT algorithms. J. Comp. Phys. 20, 397–431 (1976)
Breuß, M.: The correct use of the Lax-Friedrichs method. RAIRO Math. Models Num. Anal. 38(3), 519–540 (2004)
Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998)
Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Proc. 11(7), 689–703 (2002)
Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. Ellipses, Edition Marketing (1991)
Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)
Grahs, T., Meister, A., Sonar, T.: Image processing for numerical approximations of conservation laws: nonlinear anisotropic artificial dissipation. SIAM J. Sci. Comp. 23(5), 1439–1455 (2002)
Grahs, T., Sonar, T.: Entropy-controlled artificial anisotropic diffusion for the numerical solution of conservation laws based on algorithms from image processing. J. Visual Commun. Image Repr. 13(1/2), 176–194 (2002)
LeFloch, P.G., Liu, J.-G.: Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions. Math. Comp. 68(227), 1025–1055 (1999)
LeVeque, R.J.: Numerical Methods for Conservation Laws, 2nd edn. Birkhäuser, Basel (1992)
Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM J. Num. Anal. 27, 919–940 (1990)
Osher, S., Rudin, L.: Shocks and other nonlinear filtering applied to image processing. In: SPIE, Applications of Digital Image Processing XIV, vol. 1567, pp. 414–425 (1991)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Pollak, I., Willsky, A.S., Krim, H.: Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans. Image Proc. 9(2), 256–266 (2000)
Rudin, L.I.: Images, Numerical Analysis of Singularities and Shock Filters. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1987)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Roe, P.L.: Numerical algorithms for the linear wave equation. Technical Report 81047, Royal Aircraft Establishment, Bedford, UK (1981)
Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal. 21, 995–1011 (1984)
Wei, G.W.: Shock capturing by anisotropic diffusion oscillation reduction. Comp. Phys. Commun. 144, 317–342 (2002)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Zalesak, S.T.: Introduction to Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comp. Phys. 135, 170–171 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Breuß, M., Brox, T., Sonar, T., Weickert, J. (2005). Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_46
Download citation
DOI: https://doi.org/10.1007/11408031_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)