Skip to main content

Geometry of Isophote Curves

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

  • 1556 Accesses

Abstract

We consider the intensity surface of a 2D image, we study the evolution of the symmetry sets (and medial axes) of 1-parameter families of iso-intensity curves. This extends the investigation done on 1-parameter families of smooth plane curves (Bruce and Giblin, Giblin and Kimia, etc.) to the general case when the family of curves includes a singular member, as will happen if the curves are obtained by taking plane sections of a smooth surface, at the moment when the plane becomes tangent to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banchoff, T.F., Gaffney, T., McCrory, C.: Cusps of Gauss Mappings. Pitman Research Notes in Mathematics, 55 (1982)

    Google Scholar 

  2. Bruce, J.W., Giblin, P.J.: Curves and Singularities, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Bruce, J.W., Giblin, P.J.: Growth, motion and one-parameter families of symmetry sets. Proc. Royal Soc. Edinburgh 104A, 179–204 (1986)

    MathSciNet  Google Scholar 

  4. Bruce, J.W., Giblin, P.J., Tari, F.: Parabolic curves of evolving surfaces. Int. J. Computer Vision 17, 291–306 (1996)

    Article  Google Scholar 

  5. Diatta, A., Giblin, P.J.: Technical Reports 4, 11 and 23 of the project. Deep Structure, Singularities, and Computer Vision. IST Programme of the European Union (IST-2001-35443)

    Google Scholar 

  6. Diatta, A., Giblin, P.J.: Vertices and inflexions of plane sections of smooth surfaces in \(\mathbb R^3\). In: Submitted to VIII Sao Carlos International Workshop on Real and Complex Singularities, CIRM Luminy, Marseille, France, July 27-31 (2004)

    Google Scholar 

  7. Diatta, A., Giblin, P.J., Guilfoyle, B., Klingenberg, W.: Plane sections of surfaces and applications to symmetry sets. Preprint, University of Durham/University of Liverpool. Mathematics of Surfaces (2005) (to be submitted)

    Google Scholar 

  8. Giblin, P.J., Kimia, B.B.: On the local form and Transitions of Symmetry Sets, Medial Axes, and Shocks. Int. J. Computer Vision 54, 143–157 (2003)

    Article  MATH  Google Scholar 

  9. Giblin, P.J., Kimia, B.B.: On the Intrinsic Reconstruction of Shape from its Symmetries. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 895–911 (2003)

    Article  Google Scholar 

  10. Giblin, P.J.: Symmetry sets and medial axes in two and three dimensions. In: The mathematics of surfaces, IX (Cambridge, 2000), pp. 306–321. Springer, London (2000)

    Google Scholar 

  11. Hallinan, P.L., Gordon, G.G., Yuille, A.L., Giblin, P., Mumford, D.: Two and three dimensional patterns of the face. A.K.Peters, Natick (1999)

    MATH  Google Scholar 

  12. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  13. Morris, R.J.: Liverpool Surface Modelling Package See also Morris, R.J.: The use of computer graphics for solving problems in singularity theory, in Visualization in Mathematics, Hege, H.-C., Polthier, K., pp. 173–187. Springer, Heidelburg (1997), http://www.amsta.leeds.ac.uk/~rjm/lsmp/ , http://www.scs.leeds.ac.uk/pfaf/lsmp/SingSurf.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diatta, A., Giblin, P. (2005). Geometry of Isophote Curves. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_5

Download citation

  • DOI: https://doi.org/10.1007/11408031_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics