Skip to main content

Denoising of Audio Data by Nonlinear Diffusion

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

Nonlinear diffusion has long proven its capability for discontinuity-preserving removal of noise in image processing. We investigate the possibility to employ diffusion ideas for the denoising of audio signals. An important difference between image and audio signals is which parts of the signal are considered as useful information and noise. While small-scale oscillations in visual images are noise, they encode essential information in audio data. To adapt diffusion to this setting, we apply it to the coefficients of a wavelet decomposition instead of the audio samples themselves. Experiments demonstrate that the denoising results are surprisingly good in view of the simplicity of our approach. Nonlinear diffusion promises therefore to become a powerful tool also in audio signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candés, E.J., Guo, F.: New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing 82(11), 1519–1543 (2002)

    Article  MATH  Google Scholar 

  2. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)

    Article  Google Scholar 

  3. Coifman, R.R., Donoho, D.: Translation invariant denoising. In: Antoine, A., Oppenheim, G. (eds.) Wavelets in Statistics, pp. 125–150. Springer, New York (1995)

    Google Scholar 

  4. Coifman, R.R., Sowa, A.: Combining the calculus of variations and wavelets for image enhancement. Applied and Computational Harmonic Analysis 9(1), 1–18 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  6. Donoho, D.L.: De-noising by soft thresholding. IEEE Transactions on Information Theory 41, 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Annals of Statistics 26(3), 879–921 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total-variation minimization. SIAM Journal on Scientific Computing 24(5), 1754–1767 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gerig, G., Kübler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging 11, 221–232 (1992)

    Article  Google Scholar 

  10. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen 69, 331–371 (1910)

    Article  MATH  MathSciNet  Google Scholar 

  11. Louis, A.K., Maass, P., Rieder, A.: Wavelets: Theory and Applications. Wiley, New York (1997)

    MATH  Google Scholar 

  12. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Transactions on Image Processing 11(12), 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  14. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. In: Proc. IEEE Computer Society Workshop on Computer Vision, Miami Beach, FL, November 1987, pp. 16–22. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  15. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  16. Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Weickert, J.: A review of nonlinear diffusion filtering. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 3–28. Springer, Heidelberg (1997)

    Google Scholar 

  18. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Welk, M., Bergmeister, A., Weickert, J. (2005). Denoising of Audio Data by Nonlinear Diffusion. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_51

Download citation

  • DOI: https://doi.org/10.1007/11408031_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics