Abstract
Nonlinear diffusion has long proven its capability for discontinuity-preserving removal of noise in image processing. We investigate the possibility to employ diffusion ideas for the denoising of audio signals. An important difference between image and audio signals is which parts of the signal are considered as useful information and noise. While small-scale oscillations in visual images are noise, they encode essential information in audio data. To adapt diffusion to this setting, we apply it to the coefficients of a wavelet decomposition instead of the audio samples themselves. Experiments demonstrate that the denoising results are surprisingly good in view of the simplicity of our approach. Nonlinear diffusion promises therefore to become a powerful tool also in audio signal processing.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Candés, E.J., Guo, F.: New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing 82(11), 1519–1543 (2002)
Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)
Coifman, R.R., Donoho, D.: Translation invariant denoising. In: Antoine, A., Oppenheim, G. (eds.) Wavelets in Statistics, pp. 125–150. Springer, New York (1995)
Coifman, R.R., Sowa, A.: Combining the calculus of variations and wavelets for image enhancement. Applied and Computational Harmonic Analysis 9(1), 1–18 (2000)
Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
Donoho, D.L.: De-noising by soft thresholding. IEEE Transactions on Information Theory 41, 613–627 (1995)
Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Annals of Statistics 26(3), 879–921 (1998)
Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total-variation minimization. SIAM Journal on Scientific Computing 24(5), 1754–1767 (2003)
Gerig, G., Kübler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging 11, 221–232 (1992)
Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen 69, 331–371 (1910)
Louis, A.K., Maass, P., Rieder, A.: Wavelets: Theory and Applications. Wiley, New York (1997)
Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Transactions on Image Processing 11(12), 1450–1456 (2002)
Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1999)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. In: Proc. IEEE Computer Society Workshop on Computer Vision, Miami Beach, FL, November 1987, pp. 16–22. IEEE Computer Society Press, Los Alamitos (1987)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)
Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)
Weickert, J.: A review of nonlinear diffusion filtering. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 3–28. Springer, Heidelberg (1997)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Welk, M., Bergmeister, A., Weickert, J. (2005). Denoising of Audio Data by Nonlinear Diffusion. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_51
Download citation
DOI: https://doi.org/10.1007/11408031_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)