Skip to main content

Effectiveness of Note Duration Information for Music Retrieval

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3453))

Included in the following conference series:

  • 1098 Accesses

Abstract

Content-based music information retrieval uses features extracted from music to answer queries. For melodic queries, the two main features are the pitch and duration of notes. The note pitch feature has been well researched whereas duration has not been fully explored. In this paper, we discuss how the note duration feature can be used to alter music retrieval effectiveness. Notes are represented by strings called standardisations. A standardisation is designed for approximate string matching and may not capture melodic information precisely. To represent pitches, we use a string of pitch differences. Our duration standardisation uses a string of five symbols representing the relative durations of adjacent notes. For both features, the Smith-Waterman alignment is used for matching. We demonstrate combining the similarity in both features using a vector model. Results of our experiments in retrieval effectiveness show that note duration similarity by itself is not useful for effective music retrieval. Combining pitch and duration similarity using the vector model does not improve retrieval effectiveness over the use of pitch on its own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Uitdenbogerd, A.L., Zobel, J.: Melodic matching techniques for large music databases. In: Bulterman, D., Jeffay, K., Zhang, H.J. (eds.) Proc. ACM Multimedia Conf., Orlando, USA, pp. 57–66 (1999)

    Google Scholar 

  2. Kageyama, T., Mochizuki, K., Takashima, Y.: Melody retrieval with humming. Proc. Int. Computer Music Conf., 349–351 (1993)

    Google Scholar 

  3. McNab, R.J., Smith, L.A., Witten, I.H., Henderson, C.L., Cunningham, S.J.: Towards the digital music library: Tune retrieval from acoustic input. In: Proc. ACM Digital Libraries (1996)

    Google Scholar 

  4. Chen, J.C.C., Chen, A.L.P.: Query by rhythm: An approach for song retrieval in music databases. In: Proc. IEEE Int. Workshop on Research Issues in Data Engineering, pp. 139–146 (1998)

    Google Scholar 

  5. Lemström, K., Laine, P., Perttu, S.: Using relative interval slope in music information retrieval. In: Proc. Int. Computer Music Conf., Beijing, China, pp. 317–320 (1999)

    Google Scholar 

  6. Dannenberg, R.B., Birmingham, W.P., Tzanetakis, G., Meek, C., Hu, N., Pardo, B.: The MUSART testbed for query-by-humming evaluation. In: Hoos, H.H., Bainbridge, D. (eds.) Proc. Inf. Conf. Music Inf. Retrieval, Baltimore, USA, pp. 41–47 (2003)

    Google Scholar 

  7. Uitdenbogerd, A.L.: Music Information Retrieval Technology. PhD thesis, School of Computer Science and Information Technology, RMIT, Melbourne, Australia (2002)

    Google Scholar 

  8. Suyoto, I.S.H.: Microtonal music information retrieval. Master’s thesis, School of Computer Science and Information Technology, RMIT, Melbourne, Australia (2003)

    Google Scholar 

  9. Moles, A.: Information Theory and Esthetic Perception. University of Illinois Press, Urbana (1966)

    Google Scholar 

  10. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  12. Suyoto, I.S.H., Uitdenbogerd, A.L.: Exploring microtonal matching. In: Buyoli, C.L., Loureiro, R. (eds.) Proc. Inf. Conf. Music Inf. Retrieval, Barcelona, Spain, pp. 224–231 (2004)

    Google Scholar 

  13. Uitdenbogerd, A.L., Chattaraj, A., Zobel, J.: Methodologies for evaluation of music retrieval systems (INFORMS J. Computing) Originally presented at ISMIR 2000 (2000) (to appear)

    Google Scholar 

  14. Uitdenbogerd, A.L., Zobel, J.: Music ranking techniques evaluated. In: Proc. Australasian Computer Sci. Conf., Melbourne, Australia, pp. 275–283 (2002)

    Google Scholar 

  15. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suyoto, I.S.H., Uitdenbogerd, A.L. (2005). Effectiveness of Note Duration Information for Music Retrieval. In: Zhou, L., Ooi, B.C., Meng, X. (eds) Database Systems for Advanced Applications. DASFAA 2005. Lecture Notes in Computer Science, vol 3453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408079_25

Download citation

  • DOI: https://doi.org/10.1007/11408079_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25334-1

  • Online ISBN: 978-3-540-32005-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics