Abstract
Protein-protein interactions play a major role in most cellular processes. Thus, the challenge of identifying the full repertoire of interacting proteins in the cell is of great importance, and has been addressed both experimentally and computationally. Today, large scale experimental studies of interacting proteins, while partial and noisy, allow us to characterize properties of interacting proteins and develop predictive algorithms. Most existing algorithms, however, ignore possible dependencies between interacting pairs, and predict them independently of one another. In this study, we present a computational approach that overcomes this drawback by predicting protein-protein interactions simultaneously. In addition, our approach allows us to integrate various protein attributes and explicitly account for uncertainty of assay measurements. Using the language of relational Markov Random Fields, we build a unified probabilistic model that includes all of these elements. We show how we can learn our model properties efficiently and then use it to predict all unobserved interactions simultaneously. Our results show that by modeling dependencies between interactions, as well as by taking into account protein attributes and measurement noise, we achieve a more accurate description of the protein interaction network. Furthermore, our approach allows us to gain new insights into the properties of interacting proteins.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bock, J.R., Gough, D.A.: Predicting protein–protein interactions from primary structure. Bioinformatics 17(5), 455–460 (2001)
Buntine, W.: Chain graphs for learning. In: Proc. Uncertainty in Art. Intel., pp. 46–54 (1995)
Costanzo, M.C., et al.: YPD, POMBEPD, and WORMPD: model organism volumes of the bioknowledge library, an integrated resource for protein information. Nuc. Acids Res. 29, 75–79 (2001)
Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields. IEEE Trans. on Pat. Anal. Mach. Intel. 19, 380–393 (1997)
Deng, M., Chen, T., Sun, F.: An integrated probabilistic model for functional prediction of proteins. J. Comput. Bio. 11, 463–475 (2004)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)
Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81 (1986)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. Inte. Joint Conf. Art. Intel. (1999)
Gavin, A.C., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)
Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of relational structure. In: Int. Conf. Mach. Learning (2001)
Huh, W., et al.: Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)
Iossifov, I., Krauthammer, M., Friedman, C., Hatzivassiloglou, V., Bader, J.S., White, K.P., Rzhetsky, A.: Probabilistic inference of molecular networks from noisy data sources. Bioinformatics 20, 1205–1213 (2004)
Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)
Jansen, R., et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003)
Jordan, M.I. (ed.): Learning in Graphical Models. Kluwer, Dordrecht (1998)
Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.K.: An introduction to variational approximations methods for graphical models. In: [15]
Kumar, A., et al.: Subcellular localization of the yeast proteome. Genes. Dev. 16, 707–719 (2002)
Leone, M., Pagnani, A.: Predicting protein functions with message passing algorithms. Bioinformatics 21, 239–247 (2005)
Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(suppl. 1), i97–i204 (2003)
Mewes, H.W., Hani, J., Pfeiffer, F., Frishman, D.: MIPS: a database for genomes and protein sequences. Nuc. Acids Res. 26, 33–37 (1998)
Murphy, K., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proc. Uncertainty in Art. Intel. (1999)
Neal, R.M., Hinton, G.E.: A new view of the EM algorithm that justifies incremental and other variants. In: [15]
Pellegrini, M., Marcotte, E.M., Yeates, T.O.: A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins 35, 440–446 (1999)
Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., Seraphin, B.: A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotech. 17, 1030–1032 (1999)
Segal, E., Wang, H., Koller, D.: Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(suppl. 1), i264–i271 (2003)
Sprinzak, E., Margalit, H.: Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311, 681–692 (2001)
Sprinzak, E., Sattath, S., Margalit, H.: How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327, 919–923 (2003)
Taskar, B., Pieter Abbeel, A., Koller, D.: Discriminative probabilistic models for relational data. Proc. Uncertainty in Art. Intel., 485–492 (2002)
Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. Adv. Neu. Inf. Proc. Sys. (2003)
Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data. Adv. Neu. Inf. Proc. Sys. (2003)
Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)
von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)
Wainwright, M.J., Jaakkola, T., Willsky, A.S.: A new class of upper bounds on the log partition function. In: Proc. Uncertainty in Art. Intel. (2002)
Yedidia, J., Freeman, W., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. TR-2002-35, Mitsubishi Electric Research Labs (2002)
Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. Adv. Neu. Inf. Proc. Sys., 689–695 (2000)
Zhang, L.V., Wong, S.L., King, O.D., Roth, F.P.: Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5, 38 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jaimovich, A., Elidan, G., Margalit, H., Friedman, N. (2005). Towards an Integrated Protein-Protein Interaction Network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_2
Download citation
DOI: https://doi.org/10.1007/11415770_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25866-7
Online ISBN: 978-3-540-31950-4
eBook Packages: Computer ScienceComputer Science (R0)