Abstract
Genome-wide microarray designs containing millions to tens of millions of probes will soon become available for a variety of mammals, including mouse and human. These “tiling arrays” can potentially lead to significant advances in science and medicine, e.g., by indicating new genes and alternative primary and secondary transcripts. While bottom-up pattern matching techniques (e.g., hierarchical clustering) can be used to find gene structures in tiling data, we believe the many interacting hidden variables and complex noise patterns more naturally lead to an analysis based on generative models. We describe a generative model of tiling data and show how the iterative sum-product algorithm can be used to infer hybridization noise, probe sensitivity, new transcripts and alternative transcripts. We apply our method, called GenRate, to a new exon tiling data set from mouse chromosome 4 and show that it makes significantly more predictions than a previously described hierarchical clustering method at the same false positive rate. GenRate correctly predicts many known genes, and also predicts new gene structures. As new problems arise, additional hidden variables can be incorporated into the model in a principled fashion, so we believe that GenRate will prove to be a useful tool in the new era of genome-wide tiling microarray analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Frey, B.J., et al.: Genome-wide analysis of mouse transcription using exon-resolution microarrays and factor graphs. Under review
Storz, G.: An expanding universe of noncoding RNAs. Science 296, 1260–1263 (2002)
Mironov, A.A., et al.: Frequent alternative splicing of human genes. Genome Research 9 (1999)
Maniatis, T., et al.: Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418 (2002)
Burge, C., et al.: Splicing of precursors to mRNAs by the spliceosomes, 2nd edn. Cold Spring Harbor Laboratory Press, New York
Peng, W.T., et al.: A panoramic view of yeast noncoding RNA processing. Cell 113(7), 919–933 (2003)
Zhang, W., et al.: The functional landscape of mouse gene expression. J. Biol. 3(21) (Epub. December 2004)
Pan, Q., et al.: Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell. 16, 929–941 (2004)
Pan, Q., et al.: Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends in Genet. 21(2), 73–77 (2005)
Shai, O., et al.: Spatial bias removal in microarray images. Univ. Toronto TR PSI-2003-21 (2003)
Hild, M., et al.: An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biol. 5(1), R3 (2003) (Epub. December 22, 2003)
Hughes, T.R., et al.: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19(4), 342–347 (2001)
Kapranov, P., et al.: Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569), 916–919 (2002)
Schadt, E.E., et al.: A comprehensive transcript index of the human genome generated using microarrays and computational approaches. Genome Biology 5 (2004)
Stolc, V., et al.: A gene expression map for the euchromatic genome of drosophila melanogaster. To appear in Science (2004)
Nuwaysir, E.F., et al.: Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Gen. Res. 12(11), 1749–1755 (2002)
Okazaki, Y., et al.: FANTOM Consortium: RIKEN Genome Exploration Research Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915), 563–573 (2002)
Kent, W.J.: BLAT–the BLAST-like alignment tool. Genome Res. 12(4), 656–664 (2002)
Pen, S.G., et al.: Mining the human genome using microarrays of open reading frames. Nat. Genet. 26(3), 315–318 (2000)
Rinn, J.L., et al.: The transcriptional activity of human chromosome 22. Genes Dev. 17(4), 529–540 (2003)
Shoemaker, D.D., et al.: Experimental annotation of the human genome using microarray technology. Nature 409(6822), 922–927 (2001)
Friedman, N., et al.: Using Bayesian networks to analyze expression data. Jour. Comp. Biology 7 (2000)
Yamada, K., et al.: Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome. Science 302 (2003)
Segal, E., et al.: Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19 (2003)
Frey, B.J., et al.: GenRate: A generative model that finds and scores new genes and exons in genomic microarray data. Proc. PSB (January 2005)
Huber, W., et al.: Variance stabilization applied to microarray data calibration and to quantification of differential expression. Bioinformatics 18 (2002)
Dempster, A.P., et al.: Maximum likelihood from incomplete data via the EM algorithm. Proc. Royal Stat. Soc. B-39 (1977)
Kschischang, F.R., et al.: Factor graphs and the sum-product algorithm. IEEE Trans. Infor. Theory 47 (2001)
Frey, B.J.: Extending factor graphs so as to unify directed and undirected graphical models. In: Proc. UAI (August 2003)
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431 (2004)
Berman, P., et al.: Fast optimal genome tiling with applications to microarray design and homology search. JCB 11, 766–785 (2004)
Bertone, P., et al.: Global identification of human transcribed sequences with genome tiling arrays. Science 24 (December 2004)
Ostendorf, M.: IEEE Trans. Speech & Audio Proc. 4, 360 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frey, B.J., Morris, Q.D., Robinson, M., Hughes, T.R. (2005). Finding Novel Transcripts in High-Resolution Genome-Wide Microarray Data Using the GenRate Model. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_5
Download citation
DOI: https://doi.org/10.1007/11415770_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25866-7
Online ISBN: 978-3-540-31950-4
eBook Packages: Computer ScienceComputer Science (R0)