Abstract
A classical problem of digital sequence design, first studied in the 1950s but still not well understood, is to determine those binary sequences whose aperiodic autocorrelations are collectively small according to some suitable measure. The merit factor is an important such measure, and the problem of determining the best value of the merit factor of long binary sequences has resisted decades of attack by mathematicians and communications engineers. In equivalent guise, the determination of the best asymptotic merit factor is an unsolved problem in complex analysis proposed by Littlewood in the 1960s that until recently was studied along largely independent lines. The same problem is also studied in theoretical physics and theoretical chemistry as a notoriously difficult combinatorial optimisation problem. The best known value for the asymptotic merit factor has remained unchanged since 1988. However recent experimental and theoretical results strongly suggest a possible improvement. This survey describes the development of our understanding of the merit factor problem by bringing together results from several disciplines, and places the recent results within their historical and scientific framework.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antweiler, M., Bömer, L.: Merit factor of Chu and Frank sequences. Electron. Lett. 26, 2068–2070 (1990)
Barker, R.H.: Group synchronizing of binary digital systems. In: Jackson, W. (ed.) Communication Theory, pp. 273–287. Academic Press, New York (1953)
Baumert, L.D.: Cyclic Difference Sets. Lecture Notes in Mathematics, vol. 182. Springer, New York (1971)
Beenker, G.F.M., Claasen, T.A.C.M., Hermens, P.W.C.: Binary sequences with a maximally flat amplitude spectrum. Philips J. Res. 40, 289–304 (1985)
Bernasconi, J.: Low autocorrelation binary sequences: statistical mechanics and configuration state analysis. J. Physique 48, 559–567 (1987)
Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn., vol. I, II. Cambridge University Press, Cambridge (1999)
Boehmer, A.M.: Binary pulse compression codes. IEEE Trans. Inform. Theory, IT-13, 156–167 (1967)
Bömer, L., Antweiler, M.: Optimizing the aperiodic merit factor of binary arrays. Signal Processing 30, 1–13 (1993)
Borwein, J., Bailey, D.: Mathematics by Experiment: Plausible Reasoning in the 21st Century. A.K. Peters, Natick (2004)
Borwein, P.: Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics. Springer, New York (2002)
Borwein, P., Choi, K.-K.S.: Merit factors of polynomials formed by Jacobi symbols. Canad. J. Math. 53, 33–50 (2001)
Borwein, P., Choi, K.-K.S.: Explicit merit factor formulae for Fekete and Turyn polynomials. Trans. Amer. Math. Soc. 354, 219–234 (2002)
Borwein, P., Choi, K.-K.S., Jedwab, J.: Binary sequences with merit factor greater than 6.34. IEEE Trans. Inform. Theory 50, 3234–3249 (2004)
Borwein, P., Ferguson, R., Knauer, J.: The merit factor of binary sequences (in preparation)
Borwein, P., Mossinghoff, M.: Rudin-Shapiro-like polynomials in L 4. Math. of Computation 69, 1157–1166 (2000)
Brglez, F., Li, X.Y., Stallman, M.F., Militzer, B.: Evolutionary and alternative algorithms: reliable cost predictions for finding optimal solutions to the LABS problem. Information Sciences (2004) (to appear)
Choi, K.-K.S.: Extremal problems about norms of Littlewood polynomials (2004) (preprint)
Cohen, M.N., Fox, M.R., Baden, J.M.: Minimum peak sidelobe pulse compression codes. In: IEEE International Radar Conference, pp. 633–638. IEEE, Los Alamitos (1990)
Coxson, G.E., Hirschel, A., Cohen, M.N.: New results on minimum-PSL binary codes. In: IEEE Radar Conference, pp. 153–156. IEEE, Los Alamitos (2001)
Davis, J.A., Jedwab, J.: A survey of Hadamard difference sets. In: Arasu, K.T., et al. (eds.) Groups, Difference Sets and the Monster, pp. 145–156. de Gruyter, Berlin-New York (1996)
Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inform. Theory 45, 2397–2417 (1999)
de Groot, C., Würtz, D., Hoffmann, K.H.: Low autocorrelation binary sequences: exact enumeration and optimization by evolutionary strategies. Optimization 23, 369–384 (1992)
de Oliveira, V.M., Fontanari, J.F., Stadler, P.F.: Metastable states in high order short-range spin glasses. J. Phys. A: Math. Gen. 32, 8793–8802 (1999)
Erdös, P.: Some unsolved problems. Mich. Math. J. 4, 291–300 (1957)
Erdös, P.: An inequality for the maximum of trigonometric polynomials. Ann. Polon. Math. 12, 151–154 (1962)
Fan, P., Darnell, M.: Sequence Design for Communications Applications. In: Communications Systems, Techniques and Applications. Research Studies Press, Taunton (1996)
Ferreira, F.F., Fontanari, J.F., Stadler, P.F.: Landscape statistics of the low autocorrelated binary string problem. J. Phys. A: Math. Gen. 33, 8635–8647 (2000)
Golay, M.J.E.: Multislit spectroscopy. J. Opt. Soc. Amer. 39, 437–444 (1949)
Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Amer. 41, 468–472 (1951)
Golay, M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inform. Theory, IT-18, 449–450 (1972)
Golay, M.J.E.: Hybrid low autocorrelation sequences. IEEE Trans. Inform. Theory, IT-21, 460–462 (1975)
Golay, M.J.E.: Sieves for low autocorrelation binary sequences. IEEE Trans. Inform. Theory, IT-23, 43–51 (1977)
Golay, M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory, IT-28, 543–549 (1982)
Golay, M.J.E.: The merit factor of Legendre sequences. IEEE Trans. Inform. Theory, IT-29, 934–936 (1983)
Golay, M.J.E., Harris, D.B.: A new search for skewsymmetric binary sequences with optimal merit factors. IEEE Trans. Inform. Theory 36, 1163–1166 (1990)
Golomb, S.W.: Shift Register Sequences. Aegean Park Press, California (1982) (revised edition)
Helleseth, T., Kumar, P.V., Martinsen, H.: A new family of ternary sequences with ideal two-level autocorrelation function. Designs, Codes and Cryptography 23, 157–166 (2001)
Høholdt, T.: The merit factor of binary sequences. In: Pott, A., et al. (eds.) Difference Sets, Sequences and Their Correlation Properties. NATO Science Series C, vol. 542, pp. 227–237. Kluwer Academic Publishers, Dordrecht (1999)
Høholdt, T., Jensen, H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory 34, 161–164 (1988)
Høholdt, T., Jensen, H.E., Justesen, J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory, IT 31, 549–552 (1985)
Jensen, H.E., Høholdt, T.: Binary sequences with good correlation properties. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 306–320. Springer, Heidelberg (1989)
Jensen, J.M., Jensen, H.E., Høholdt, T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37, 617–626 (1991)
Kahane, J.-P.: Sur les polynômes á coefficients unimodulaires. Bull. London Math. Soc. 12, 321–342 (1980)
Kirilusha, A., Narayanaswamy, G.: Construction of new asymptotic classes of binary sequences based on existing asymptotic classes. Summer Science Program Technical Report, Dept. Math. Comput. Science, University of Richmond (July 1999)
Knauer, J.: Merit Factor Records. Online, Available, http://www.cecm.sfu.ca/~jknauer/labs/records.html (November 2004)
Kristiansen, R.A.: On the Aperiodic Autocorrelation of Binary Sequences. Master’s thesis, University of Bergen (March 2003)
Kristiansen, R.A., Parker, M.G.: Binary sequences with merit factor > 6.3. IEEE Trans. Inform. Theory 50, 3385–3389 (2004)
Leung, K.H., Ma, S.L., Schmidt, B.: Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders. Trans. Amer. Math. Soc. 356, 4343–4358 (2004)
Leung, K.H., Schmidt, B.: The field descent method. Designs, Codes and Cryptography (to appear)
Lindholm, J.H.: An analysis of the pseudo-randomness properties of subsequences of long m-sequences. IEEE Trans. Inform. Theory, IT 14, 569–576 (1968)
Lindner, J.: Binary sequences up to length 40 with best possible autocorrelation function. Electron. Lett. 11, 507 (1975)
Littlewood, J.E.: On the mean values of certain trigonometrical polynomials. J. London Math. Soc. 36, 307–334 (1961)
Littlewood, J.E.: On polynomials ∑ n ±z m, \(\sum^n e^{{\alpha_m}i}z^m\), z = e θi. J. London Math. Soc. 41, 367–376 (1966)
Littlewood, J.E.: Some Problems in Real and Complex Analysis. Heath Mathematical Monographs. D.C. Heath and Company, Massachusetts (1968)
Lunelli, L.: Tabelli di sequenze ( +1, −1) con autocorrelazione troncata non maggiore di 2. Politecnico di Milano (1965)
Ma, S.L.: A survey of partial difference sets. Designs, Codes and Cryptography 4, 221–261 (1994)
Massey, J.L.: Marcel J.E. Golay (1902-1989). Obituary. IEEE Information Theory Society Newsletter (June 1990)
Mertens, S.: Exhaustive search for low-autocorrelation binary sequences. J. Phys. A: Math. Gen. 29, L473–L481 (1996)
Mertens, S., Bauke, H.: Ground States of the Bernasconi Model with Open Boundary Conditions. Online. Available (November 2004), http://odysseus.nat.uni-magdeburg.de/~mertens/bernasconi/open.dat
Militzer, B., Zamparelli, M., Beule, D.: Evolutionary search for low autocorrelated binary sequences. IEEE Trans. Evol. Comput. 2, 34–39 (1998)
Moon, J.W., Moser, L.: On the correlation function of random binary sequences. SIAM J. Appl. Math. 16, 340–343 (1968)
Newman, D.J., Byrnes, J.S.: The L 4 norm of a polynomial with coefficients ±1. Amer. Math. Monthly 97, 42–45 (1990)
Parker, M.G.: Even length binary sequence families with low negaperiodic autocorrelation. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 200–210. Springer, Heidelberg (2001)
Paterson, K.G.: Applications of exponential sums in communications theory. In: Walker, M. (ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 1–24. Springer, Heidelberg (1999)
Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44, 3–54 (2002)
Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10, 855–859 (1959)
Ryser, H.J.: Combinatorial Mathematics. Carus Mathematical Monographs No. 14. Mathematical Association of America, Washington, DC (1963)
Sarwate, D.V.: Mean-square correlation of shift-register sequences. IEE Proceedings Part F 131, 101–106 (1984)
Schroeder, M.R.: Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans. Inform. Theory, IT 16, 85–89 (1970)
Shapiro, H.: Harold Shapiro’s Research Interests. Online. Available (November 2004), http://www.math.kth.se/~shapiro/profile.html
Shapiro, H.S.: Extremal Problems for Polynomials and Power Series. Master’s thesis, Mass. Inst. of Technology (1951)
Turyn, R., Storer, J.: On binary sequences. Proc. Amer. Math. Soc. 12, 394–399 (1961)
Turyn, R.J.: Character sums and difference sets. Pacific J. Math. 15, 319–346 (1965)
Turyn, R.J.: Sequences with small correlation. In: Mann, H.B. (ed.) Error Correcting Codes, pp. 195–228. Wiley, New York (1968)
Xiang, Q.: Recent results on difference sets with classical parameters. In: Pott, A., et al. (eds.) Difference Sets, Sequences and Their Correlation Properties. NATO Science Series C, vol. 542, pp. 419–437. Kluwer Academic Publishers, Dordrecht (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jedwab, J. (2005). A Survey of the Merit Factor Problem for Binary Sequences. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_2
Download citation
DOI: https://doi.org/10.1007/11423461_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26084-4
Online ISBN: 978-3-540-32048-7
eBook Packages: Computer ScienceComputer Science (R0)