Abstract
Merit factor of a binary sequence is reviewed, and constructions are described that appear to satisfy an asymptotic merit factor of 6.3421... Multivariate merit factor is characterised and recursive Boolean constructions are presented which satisfy a non-vanishing asymptote in multivariate merit factor. Clifford merit factor is characterised as a generalisation of multivariate merit factor and as a type of quantum merit factor. Recursive Boolean constructions are presented which, however, only satisfy an asymptotic Clifford merit factor of zero. It is demonstrated that Boolean functions obtained via quantum error correcting codes tend to maximise Clifford merit factor. Results are presented as to the distribution of the above merit factors over the set of binary sequences and Boolean functions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Littlewood, J.E.: Some Problems in Real and Complex Analysis. Heath Mathematical Monographs (1968)
Golay, M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inform. Theory IT 18, 449–450 (1972)
Golay, M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory 28, 543–549 (1982)
Golay, M.J.E.: A new search for skewsymmetric binary sequences with optimal merit factors. IEEE Trans. Inform. Theory 36, 1163–1166 (1990)
Høholdt, T., Jensen, H.E., Justesen, J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory 31, 549–552 (1985)
Høholdt, T., Jensen, H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory IT 34, 161–164 (1988)
Høholdt, T.: The merit factor of binary sequences. In: Pott, A., Kumar, P.V., Helleseth, T., Jungnickel, D. (eds.) Difference Sets, Sequences and their Correlation Properties, Bad Winsheim, August 2–14. Series C: Mathematical and Physical Sciences, pp. 227–237. Kluwer Academic Publishers, Dordrecht (1999), http://arxiv.org/quant-ph/0107106 (long version)
Jensen, J.M., Jensen, H.E., Høholdt, T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37, 617–626 (1991)
Newman, D.J., Byrnes, J.S.: The l 4 norm of a polynomial with coefficients ±1. Amer. Math. Monthly 97, 42–45 (1990)
Golay, M.J.E.: The merit factor of legendre sequences. IEEE Trans. Inform. Theory 29, 934–936 (1983)
Kristiansen, R.A.: On the aperiodic autocorrelation of binary sequences. Master’s thesis, Selmer Centre, Inst. for Informatics, University of Bergen, Norway (2003), http://www.ii.uib.no/~matthew/Masters/notes.ps
Kristiansen, R.A., Parker, M.G.: Binary sequences with merit factor > 6.3. IEEE Trans. Inform. Theory 50, 3385–3389 (2004)
Borwein, P., Choi, K.K.S., Jedwab, J.: Binary sequences with merit factor greater than 6.34. IEEE Trans. Inform. Theory 50, 3234–3249 (2004)
Jedwab, J.: A survey of the merit factor problem for binary sequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 30–55. Springer, Heidelberg (2005)
Ramakrishna, G.S., Mow, W.H.: A new search for optimal binary arrays with minimum peak sidelobe levels. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 355–360. Springer, Heidelberg (2005)
Zhang, X.M., Zheng, Y.: Gac - the criterion for global avalanche characteristics of cryptographic functions. J. Universal Computer Science 1, 320–337 (1995)
Gulliver, T.A., Parker, M.G.: The multi-dimensional aperiodic merit factor of binary sequences. preprint (2003), http://www.ii.uib.no/~matthew/ISITRecursions.pdf
Golay, M.J.E.: Multislit spectroscopy. J. Opt. Soc. Amer. 39, 437–444 (1949)
Shapiro, H.S.: Extremal problems for polynomials. Master’s thesis, M.I.T (1951)
Rudin, W.: Some theorems on fourier coefficients. Proc. Amer. Math. Soc. 10 (1959)
Parker, M.G., Rijmen, V.: The quantum entanglement of binary and bipolar sequences. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications, SETA 2001. Discrete Mathematics and Theoretical Computer Science Series, Springer, Heidelberg (2001), http://arxiv.org/quant-ph/0107106 (long version)
Riera, C., Parker, M.G.: Generalised bent criteria for boolean functions (i). (preprint) (2004), http://www.ii.uib.no/~matthew/LCPartIf.pdf
Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Physical Review Letters 86, 910–913 (2001)
Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69 (2004), http://arxiv.org/quant-ph/0307130
Verstraete, F.: A Study of Entanglement in Quantum Information Theory. PhD thesis, Dept. Elektrotechniek, Katholieke Universiteit, Leuven, Belgium (2002)
Parker, M.G.: Quantum factor graphs. Annals of Telecom, 472–483 (2001), http://arxiv.org/quant-ph/0010043
Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65 (2002), http://arxiv.org/quant-ph/0012111
Glynn, D.G.: On self-dual quantum codes and graphs. Submitted to Elect. J. Combinatorics (2002), http://homepage.mac.com/dglynn/.cv/dglynn/Public/SD-G3.pdf-link.pdf
Grassl, M., Klappenecker, A., Rotteler, M.: Graphs, quadratic forms, and quantum codes. In: Proc. IEEE Int. Symp. Inform. Theory, p. 45 (2002)
Glynn, D.G., Gulliver, T.A., Maks, J.G., Gupta, M.K.: The Geometry of Additive Quantum Codes. Springer, Heidelberg (2004)
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)
Zyczkowski, K., Bengtsson, I.: Relativity of pure states entanglement. Ann. Phys. 295 (2002)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998), http://arxiv.org/quant-ph/9608006
Klappenecker, A., Rotteler, M.: Clifford codes. In: Brylinski, R., Chen, G. (eds.) Mathematics of Quantum Computation. CRC Press, Boca Raton (2002)
Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997), http://arxiv.org/quant-ph/9705052
Danielsen, L.E., Gulliver, T.A., Parker, M.G.: Aperiodic propagation criteria for Boolean functions. ECRYPT Internal Document, STVL-UiB-1-APC-1.0 (2004), http://www.ii.uib.no/~matthew/GenDiff4.pdf
Danielsen, L.E., Parker, M.G.: Spectral orbits and peak-to-average power ratio of boolean functions with respect to the {I,H,n}n transform. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 373–388. Springer, Heidelberg (2005)
Grassl, M.: Bounds on d min for additive [[n,k,d]] QECC (2003), Web page http://iaks-www.ira.uka.de/home/grassl/QECC/TableIII.html
Riera, C., Petrides, G., Parker, M.G.: Generalised bent criteria for boolean functions (ii). (preprint) (2004), http://www.ii.uib.no/~matthew/LCPartIIf.pdf
Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low peak-to-average power ratio. Technical Report 242, Dept. of Informatics, University of Bergen, Norway (2003), http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf , update at: http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf
Borwein, P., Choi, K.K.S.: Explicit merit factor formulae for fekete and turyn polynomials. Trans. Amer. Math. Soc. 354, 219–234 (2002)
Borwein, P., Choi, K.K.S.: Merit factors of polynomials formed by jacobi symbols. Canad. J. Math. 53, 33–50 (2001)
Parker, M.G.: Even length binary sequence families with low negaperiodic autocorrelation. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 200–209. Springer, Heidelberg (2001)
Kirilusha, A., Narayanaswamy, G.: Construction of new asymptotic classes of binary sequences based on existing asymptotic classes. Technical report, Dept. Math. and Comput. Science, Univ. of Richmond (1999), http://www.mathcs.richmond.edu/~jad/summer.html
Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory 45, 2397–2417 (1999)
Danielsen, L.E.: Database of self-dual quantum codes (2004) Web page, http://www.ii.uib.no/~larsed/vncorbits/
Golay, M.J.E.: Complementary series. IRE Trans. Inform. Theory IT 7, 82–87 (1961)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69 (2004), http://arxiv.org/quant-ph/0308151
Bouchet, A.: Isotropic systems. European J. Combin. 8, 231–244 (1987)
Bouchet, A.: Recognizing locally equivalent graphs. Discrete Math. 114, 75–86 (1993)
Storøy, D.: Master’s thesis - in preparation. Selmer Centre, Inst. for Informatics, University of Bergen, Bergen, Norway (2005)
Gulliver, T.A., Kim, J.L.: Circulant based extremal additive self-dual codes over GF(4). IEEE Trans. Inform. Theory 50, 359–366 (2004)
Danielsen, L.E.: Master’s thesis - in preparation. Selmer Centre, Inst. for Informatics, University of Bergen, Bergen, Norway (2005)
Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applications 377, 11–30 (2004)
Arratia, R., Bollobas, B., Sorkin, G.B.: The interlace polynomial of a graph. J. Combin. Theory Ser. B 92, 199–233 (2004), http://arxiv.org/abs/math/0209045
Bouchet, A.: Tutte-martin polynomials and orienting vectors of isotropic systems. Graphs Combin. 7, 235–252 (1991)
Riera, C., Parker, M.G.: Spectral interpretations of the interlace polynomial (preprint) (2004), http://www.ii.uib.no/~matthew/WCC4.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Parker, M.G. (2005). Univariate and Multivariate Merit Factors. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_4
Download citation
DOI: https://doi.org/10.1007/11423461_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26084-4
Online ISBN: 978-3-540-32048-7
eBook Packages: Computer ScienceComputer Science (R0)