Abstract
Let S 1, S 2, ..., S t be t N-periodic sequences over \({\mathbb F}_{q}\). The joint linear complexity L(S 1,S 2,..., S t ) is the least order of a linear recurrence relation that S 1, S 2, ...,S t satisfy simultaneously. Since the \({\mathbb F}_{q}\)-linear spaces \({\mathbb F}^{t}_{q}\) and \({\mathbb F}_{q^{t}}\) are isomorphic, a multisequence can also be identified with a single sequence \({\mathcal S}\) having its terms in the extension field \({\mathbb F}_{q^{t}}\). The linear complexity \(L({\mathcal S})\) of \({\mathcal S}\), i.e. the length of the shortest recurrence relation with coefficients in \({\mathbb F}_{q^{t}}\) that \({\mathcal S}\) satisfies, may be significantly smaller than L(S 1,S 2,..., S t ). We investigate relations between \(L({\mathcal S})\) and L(S 1,S 2,..., S t ), in particular we establish lower bounds on \(L({\mathcal S})\) expressed in terms of L(S 1,S 2,..., S t ).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cusick, T., Ding, C., Renvall, A.: Stream Ciphers and Number Theory (Revised edn.). North-Holland, Amsterdam (2004)
Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)
Hasse, H.: Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175, 50–54 (1936)
Jungnickel, D.: Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim (1993)
Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)
Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: A general theory. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 358–371. Springer, Heidelberg (1996)
Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)
Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)
Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19, 61–72 (2003)
Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Heidelberg (2003)
Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)
Sakata, S.: Extension of the Berlekamp-Massey algorithm to N dimensions. Information and Computation 84, 207–239 (1990)
Wang, L.P., Niederreiter, H.: Enumeration results on the joint linear complexity of multisequences, Finite Fields Appl. (to appear)
Wang, L.P., Zhu, Y.F.: F[x]-lattice basis reduction algorithm and multisequence synthesis. Sci. China Ser. F 44, 321–328 (2001)
Xing, C.P.: Multi-sequences with almost perfect linear complexity profile and function fields over finite fields. J. Complexity 16, 661–675 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meidl, W. (2005). Discrete Fourier Transform, Joint Linear Complexity and Generalized Joint Linear Complexity of Multisequences. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_5
Download citation
DOI: https://doi.org/10.1007/11423461_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26084-4
Online ISBN: 978-3-540-32048-7
eBook Packages: Computer ScienceComputer Science (R0)