Abstract
Given a set of n colored points with a total of m (≥ 3) colors in 2D, the problem of identifying the smallest color-spanning object is studied. We have considered two different shapes: (i) corridor, and (ii) rectangle of arbitrary orientation. Our proposed algorithms for the problems (i) and (ii) run in time O(n 2logn) and O(n 3logm) respectively.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristan, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)
Huttenlochar, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9, 267–291 (1993)
Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic J. Comput. 1, 231–245 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Das, S., Goswami, P.P., Nandy, S.C. (2005). Recognition of Minimum Width Color-Spanning Corridor and Minimum Area Color-Spanning Rectangle. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_85
Download citation
DOI: https://doi.org/10.1007/11424758_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25860-5
Online ISBN: 978-3-540-32043-2
eBook Packages: Computer ScienceComputer Science (R0)