Abstract
Many solutions exist to rebuild a three-dimensional object represented by a set of points. The purpose of our work is to provide an automatic reconstruction from an unorganized cloud, describing an unknown shape, in the aim to compute its volume. The approach employed in this paper consists in filling the object’s interior with isosurfaces of potential fields and to use their fusion property in order to find the full volume and the continuous shape of the sampled object. Thus, the first step of our reconstruction is to search a correct interior for the object described by the set of points. Then, comes the positioning of implicit primitives into the cloud, deep inside of it and close to the boundary. A controlled fusion of the isosurfaces guarantees that no holes are present, such that we obtain a complete shape filling.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amenta, N., Bern, M., Kamvysselisy, M.: A new Voronoï-based surface reconstruction algorithm. In: Proceedings of ACM Siggraph 1998, pp. 415–421 (1998)
Edelsbrunner, H., Mücke, E.P.: Three-dimensional Alpha Shapes. ACM Transactions on Graphics 13, 43–72 (1994)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Proceedings of ACM Siggraph 1992, pp. 71–78 (1992)
Muraki, S.: Volumetric shape description of range data using “Blobby Model”. In: Proceedings of ACM Siggraph 1991, pp. 227–235 (1991)
Tsingos, N., Gascuel, M.P.: Implicit surfaces for semi-automatic medical organs reconstruction. In: Proceedings of Computer Graphics International 1995, pp. 3–15 (1995)
Bittar, E., Tsingos, N., Gascuel, M.P.: Automatic reconstruction of unstructured 3D data: combining medial axis and implicit surfaces. Computer Graphics Forum 14(3), 457–468 (1995)
Mari, J.L.: Modélisation de formes complexes intégrant leurs caractéristiques globales et leurs spécificités locales. Thèse (2002)
Faudot, D., Gesquière, G., Garnier, L.: An introduction to an analytical way to compute the volume of blobs. Int. Journal of Pure and Applied Mathematics 11(1), 1–20 (2004)
Hart, J.C.: Morse theory for computer graphics. In: Hege, H.-C., Polthier, K. (eds.) Mathematical Visualization, pp. 257–268. Springer, Heidelberg (1998)
Stander, B.T., Hart, J.C.: Guaranteeing the Topology of an Implicit Surface Polygonization for Interactive Modeling. In: Proceedings of ACM Siggraph 1997, pp. 279–286 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bénédet, V., Lamarque, L., Faudot, D. (2005). Volumetric Reconstruction of Unorganized Set of Points with Implicit Surfaces. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_86
Download citation
DOI: https://doi.org/10.1007/11424758_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25860-5
Online ISBN: 978-3-540-32043-2
eBook Packages: Computer ScienceComputer Science (R0)