Abstract
This paper presents the development of a novel personal concept-based multilingual Web content mining system. Multilingual linguistic knowledge required by multilingual Web content mining is made available by encoding all multilingual concept-term relationships within a multilingual concept space using self-organising map. With this linguistic knowledge base, a personal space of interest is generated to reveal the conceptual content of a user’s multiple topics of interest using the user’s bookmark file. To personalise the multilingual Web content mining process, a concept-based Web crawler is developed to automatically gather multilingual web documents that are relevant to the user’s topics of interest As such, user-oriented concept-focused knowledge discovery in the multilingual Web is facilitated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carbonell, J.G., Yang, Y., Frederking, R.E., Brown, R.D., Geng, Y., Lee, D.: Translingual information retrieval: a comparative evaluation. In: Pollack, M.E. (ed.) IJCAI 1997 Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 708–714 (1997)
Chakrabarti, S.: Data mining for hypertext: a tutorial survey. ACM SIGKDD Exploration 1(2), 1–11 (2000)
Chang, C., Healey, M.J., McHugh, J.A.M., Wang, J.T.L.: Mining the World Wide Web: an information search approach. Kluwer Academic Publishers, Dordrecht (2001)
Davis, M.: New experiments in cross-language text retrieval at nmsu’s computing research lab. In: Proceedings of the Fifth Retrieval Conference (TREC-5) Gaithersburg, National Institute of Standards and Technology, MD (1996)
Kohonen, T.: Self-Organising Maps. Springer, Berlin (1995)
Kosala, R., Blockeel, H.: Web mining research: a survey. ACM SIGKDD Exploration 2(1), 1–15 (2000)
Landauer, T.K., Littman, M.L.: Fully automatic cross-language document retrieval. In: Proceedings of the Sixth Conference on Electronic Text Research, pp. 31–38 (1990)
Lang, K.: NewsWeeder: Learning to filter news. In: Proceeding on the 12th International Conference on Machine Learning, Lake Tahoe, CA, pp. 331–339. Morgan Kaufmann, San Francisco (1995)
Lieberman, H., Van Dyke, N.W., Vivacqua, A.S.: Let’s browse: A collaborative browsing agent. In: Proceedings of the 1999 International Conference on Intelligent User Interfaces, Collaborative Filtering and Collaborative Interfaces, pp. 65–68 (1999)
Mukhopadhyay, S., Mostafa, J., Palakal, M., Lam, W., Xue, L., Hudli, A.: An adaptive multi-level information filtering system. In: Proceedings of The Fifth International Conference on User Modelling, pp. 21–28 (1996)
Salton, G.: Automatic Text Processing: The Transformation, analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)
Soergel, D.: Multilingual thesauri in cross-language text and speech retrieval. In: Working Notes of AAAI Spring Symposium on Cross-Language Text and Speech Retrieval, Stanford, CA, pp. 164–170 (1997)
Tan, A.-H.: Text Mining: The state of the art and the challenges. In: PAKDD 1999, pp. 65–70 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chau, R., Yeh, CH., Smith, K.A. (2005). A Personalized Multilingual Web Content Miner: PMWebMiner. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424826_103
Download citation
DOI: https://doi.org/10.1007/11424826_103
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25861-2
Online ISBN: 978-3-540-32044-9
eBook Packages: Computer ScienceComputer Science (R0)