Skip to main content

Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3481))

Included in the following conference series:

Abstract

The Advanced Encryption Standard (AES) specifies an algorithm for a symmetric-key cryptosystem that has already found wide adoption in security applications. A substantial part of the AES algorithm are the MixColumns and InvMixColumns operations, which involve multiplications in the binary extension field GF(28). Recently proposed instruction set extensions for elliptic curve cryptography (ECC) include custom instructions for the multiplication of binary polynomials. In the present paper we analyze how well these custom instructions are suited to accelerate a software implementation of the AES. We used the SPARC V8-compatible LEON-2 processor with ECC extensions for verification and to obtain realistic timing results. Taking the fastest implementation for 32-bit processors as reference, we were able to achieve speedups of up to 25% for encryption and nearly 20% for decryption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.: Efficient Software Implementation of AES on 32-Bit platforms. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 159–171. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Blömer, J., Merchan, J.G., Krummel, V.: Provably Secure Masking of AES. Cryptology ePrint Archive, Report 2004/101, http://eprint.iacr.org/

  3. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1999) Available for download at http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

  4. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Gaisler, J.: The LEON-2 Processor User’s Manual (Version 1.0.24) (September 2004), Available for download at http://www.gaisler.com/doc/leon2-1.0.24-xst.pdf

  6. Gladman, B.: Implementations of AES (Rijndael) in C/C++, Available online at http://fp.gladman.plus.com/cryptographytechnology/rijndael/index.htm

  7. Großschädl, J., Savas, E.: Instruction Set Extensions for Fast arithmetic in Finite Fields GF(p) and GF(2m). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 133–147. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Großschädl, J., Tillich, S.: Instruction Set Extensions for Cryptography (ISEC). Available online isec/, at http://www.iaik.at/research/vlsi/01projects/01

  9. Lee, R.B., Shi, Z., Yang, X.: Efficient permutation instructions for fast software cryptography. IEEE Micro 21(6), 56–69 (2001)

    Article  Google Scholar 

  10. Mangard, S., Aigner, M., Dominikus, S.: A highly regular and scalable AES hardware architecture. IEEE Transactions on Computers 52(4), 483–491 (2003)

    Article  Google Scholar 

  11. Morioka, S., Satoh, A.: A 10-Gbps full-AES crypto design with a twisted BDD S-box architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12(7), 686–691 (2004)

    Article  Google Scholar 

  12. National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption Standard (November 2001)

    Google Scholar 

  13. Oswald, E., Mangard, S., Pramstaller, N.: A Side-Channel Analysis Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic level: Next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 137–151. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tillich, S., Großschädl, J. (2005). Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424826_70

Download citation

  • DOI: https://doi.org/10.1007/11424826_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25861-2

  • Online ISBN: 978-3-540-32044-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics