Abstract
This paper proposes a computationally inexpensive 2D shape interpolation technique for two compatible triangulations. Each triangle in a triangulation is represented using a stick structure. The intermediate shape of each triangle is interpolated using these sticks. All of these intermediate triangles are then assembled together to obtain the intermediate shape of the triangulation according to a predetermined order. Our approach is inspired by Alexa et al’s work [1], but is simpler and more efficient. Even though we ignore the local error, our approach can generate the satisfactory (as-rigid-as-possible) morph sequence like Alexa et al’s.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH 2000 Proceedings, pp. 157–164 (July 2000)
Beier, T., Neely, S.: Feature-Based Image Metamorphosis. In: Proceedings of SIGGRAPH 1992, vol. 26, pp. 35–42 (1992)
Lee, S.Y., Chwa, K.Y., Shin, S.T., Wolberg, G.: Image Metamorphosis Using Snakes and Free-Form Deformations. In: SIGGRAPH 1995 Proceedings, pp. 439–444 (1995)
Wolberg, G.: Image Morphing Survey. Visual Computer 14, 360–372 (1998)
Tal, A., Elber, G.: Image morphing with feature preserving texture. Computer Graphics Forum (Eurographics 1999 Proceedings) 18(3), 339–348 (1999)
Hughes, J.F.: Scheduled Fourier Volume Morphing. In: SIGGRAPH 1992 Proceedings, vol. 26(2), pp. 43–46 (1992)
He, T., Wang, S., Kaufman, A.: Wavelet-Based Volume Morphing. In: Proceedings of Visualization 1994, pp. 85–92 (1994)
Sederberg, T.W., Greenwood, E.: A physically based approach to 2D shape blending. In: SIGGRAPH 1992 Proceedings, vol. 26, pp. 25–34 (1992)
Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2D shape blending: An intrinsic solution to the vertex path problem. In: SIGGRAPH 1993 Proceedings, vol. 27, pp. 15–18 (1993)
Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Computer Graphics and Applications 15(2), 44–50 (1995)
Goldstein, E., Gotsman, C.: Polygon Morphing Using a Multiresolution Representation. In: Proceedings of Graphics Interface, pp. 247–254 (May 1995)
Floater, M.S., Gotsman, C.: How to morph tilings injectively. Journal of Computational and Applied Mathematics 101, 117–129 (1999)
Surazhsky, V., Gotsman, C.: Morphing stick figures using optimized compatible triangu-lations. In: Proceedings of Pacific Graphics, Tokyo (October 2001)
Kanai, T., Suzuki, H., Kimura, F.: 3D geometric metamorphosis based on harmonic maps. In: Proceedings of Pacific Graphics 1997, pp. 97–104 (October 1997)
Kent, J.R., Carlson, W.E., Parent, R.E.: Shape Transformation for Polyhedral Objects. In: SIGGRAPH 1992 Proceedings, vol. 26(2), pp. 47–54 (1992)
Alexa, M.: Merging polyhedral shapes with scattered features. The Visual Computer 16(1), 26–37 (2000)
Lee, A.W.F., Dobkin, D., Sweldens, W., Schroder, P.: Multiresolution Mesh Morphing. In: SIGGRAPH 1999 Proceedings, pp. 343–350 (1999)
Aronov, B., Seidel, R., Souvaine, D.: On compatible triangulations of simple polygons. Computational Geometry: Theory and Applications 3(1), 27–35 (1993)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1994)
Lee, T.-Y., Huang, P.-H.: Fast and Intuitive Metamorphosis of 3D Polyhedral Models Using SMCC Mesh Merging Scheme. IEEE Transactions on Visualization and Computer Graphics 9(1), 85–98 (2003)
Lin, C.-H., Lee, T.-Y.: Metamorphosis of 3D Polyhedral Models Using Progressive Connectivity Transformations. IEEE Transactions on Visualization and Computer Graphics 11(1), 2–12 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, PH., Lee, TY. (2005). A Fast 2D Shape Interpolation Technique. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424857_113
Download citation
DOI: https://doi.org/10.1007/11424857_113
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25862-9
Online ISBN: 978-3-540-32045-6
eBook Packages: Computer ScienceComputer Science (R0)