Skip to main content

A Fast 2D Shape Interpolation Technique

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3482))

Included in the following conference series:

Abstract

This paper proposes a computationally inexpensive 2D shape interpolation technique for two compatible triangulations. Each triangle in a triangulation is represented using a stick structure. The intermediate shape of each triangle is interpolated using these sticks. All of these intermediate triangles are then assembled together to obtain the intermediate shape of the triangulation according to a predetermined order. Our approach is inspired by Alexa et al’s work [1], but is simpler and more efficient. Even though we ignore the local error, our approach can generate the satisfactory (as-rigid-as-possible) morph sequence like Alexa et al’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH 2000 Proceedings, pp. 157–164 (July 2000)

    Google Scholar 

  2. Beier, T., Neely, S.: Feature-Based Image Metamorphosis. In: Proceedings of SIGGRAPH 1992, vol. 26, pp. 35–42 (1992)

    Google Scholar 

  3. Lee, S.Y., Chwa, K.Y., Shin, S.T., Wolberg, G.: Image Metamorphosis Using Snakes and Free-Form Deformations. In: SIGGRAPH 1995 Proceedings, pp. 439–444 (1995)

    Google Scholar 

  4. Wolberg, G.: Image Morphing Survey. Visual Computer 14, 360–372 (1998)

    Article  Google Scholar 

  5. Tal, A., Elber, G.: Image morphing with feature preserving texture. Computer Graphics Forum (Eurographics 1999 Proceedings) 18(3), 339–348 (1999)

    Article  Google Scholar 

  6. Hughes, J.F.: Scheduled Fourier Volume Morphing. In: SIGGRAPH 1992 Proceedings, vol. 26(2), pp. 43–46 (1992)

    Google Scholar 

  7. He, T., Wang, S., Kaufman, A.: Wavelet-Based Volume Morphing. In: Proceedings of Visualization 1994, pp. 85–92 (1994)

    Google Scholar 

  8. Sederberg, T.W., Greenwood, E.: A physically based approach to 2D shape blending. In: SIGGRAPH 1992 Proceedings, vol. 26, pp. 25–34 (1992)

    Google Scholar 

  9. Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2D shape blending: An intrinsic solution to the vertex path problem. In: SIGGRAPH 1993 Proceedings, vol. 27, pp. 15–18 (1993)

    Google Scholar 

  10. Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Computer Graphics and Applications 15(2), 44–50 (1995)

    Article  Google Scholar 

  11. Goldstein, E., Gotsman, C.: Polygon Morphing Using a Multiresolution Representation. In: Proceedings of Graphics Interface, pp. 247–254 (May 1995)

    Google Scholar 

  12. Floater, M.S., Gotsman, C.: How to morph tilings injectively. Journal of Computational and Applied Mathematics 101, 117–129 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Surazhsky, V., Gotsman, C.: Morphing stick figures using optimized compatible triangu-lations. In: Proceedings of Pacific Graphics, Tokyo (October 2001)

    Google Scholar 

  14. Kanai, T., Suzuki, H., Kimura, F.: 3D geometric metamorphosis based on harmonic maps. In: Proceedings of Pacific Graphics 1997, pp. 97–104 (October 1997)

    Google Scholar 

  15. Kent, J.R., Carlson, W.E., Parent, R.E.: Shape Transformation for Polyhedral Objects. In: SIGGRAPH 1992 Proceedings, vol. 26(2), pp. 47–54 (1992)

    Google Scholar 

  16. Alexa, M.: Merging polyhedral shapes with scattered features. The Visual Computer 16(1), 26–37 (2000)

    Article  MATH  Google Scholar 

  17. Lee, A.W.F., Dobkin, D., Sweldens, W., Schroder, P.: Multiresolution Mesh Morphing. In: SIGGRAPH 1999 Proceedings, pp. 343–350 (1999)

    Google Scholar 

  18. Aronov, B., Seidel, R., Souvaine, D.: On compatible triangulations of simple polygons. Computational Geometry: Theory and Applications 3(1), 27–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1994)

    Google Scholar 

  20. Lee, T.-Y., Huang, P.-H.: Fast and Intuitive Metamorphosis of 3D Polyhedral Models Using SMCC Mesh Merging Scheme. IEEE Transactions on Visualization and Computer Graphics 9(1), 85–98 (2003)

    Article  MathSciNet  Google Scholar 

  21. Lin, C.-H., Lee, T.-Y.: Metamorphosis of 3D Polyhedral Models Using Progressive Connectivity Transformations. IEEE Transactions on Visualization and Computer Graphics 11(1), 2–12 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, PH., Lee, TY. (2005). A Fast 2D Shape Interpolation Technique. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424857_113

Download citation

  • DOI: https://doi.org/10.1007/11424857_113

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25862-9

  • Online ISBN: 978-3-540-32045-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics