Abstract
Spatial clustering is an active research area in spatial data mining with various methods reported. In this paper, we compare two density-based methods, DBSCAN and DBRS. First, we briefly describe the methods and then compare them from a theoretical view. Finally, we give an empirical comparison of the algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. SIGMOD Record. 19(2), 322–331 (1990)
Cai, Y., Cercone, N., Han, J.: Learning In Relational Databases: An Attribute-Oriented Approach. Computational Intelligence 7, 119–132 (1991)
Ester, M., Kriegel, H.-P., Sander, J.: Spatial Data Mining: A Database Approach. In: Proc. 5th Int’l Symp. on Large Spatial Databases, Berlin, pp. 48–66 (1997)
Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. of 2nd KDD, Portland, pp. 226–231 (1996)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)
Katayama, N., Satoh, S.: The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. SIGMOD Record. 26(2), 369–380 (1997)
Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographic Information Databases. In: Proc. 4th Int’l Symp. on Large Spatial Databases, Portland, Maine, pp. 47–66 (1995)
Ng, R., Han, J.: Efficient and Effective Clustering Method for Spatial Data Mining. In: Proc. of Int’l Conf. on Very Large Data Bases, Santiago, Chile, pp. 144–155 (1994)
Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs (2003)
Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Transactions on Knowledge and Data Engineering 16(10), 1169–1184 (2004)
Wang, X., Hamilton, H.J.: DBRS: A Density-Based Spatial Clustering Method with Random Sampling. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637, pp. 563–575. Springer, Heidelberg (2003)
Wang, X., Hamilton, H.: DBRS: A Density-Based Spatial Clustering Method with Random Sampling. Technical Report, University of Regina (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, X., Hamilton, H.J. (2005). A Comparative Study of Two Density-Based Spatial Clustering Algorithms for Very Large Datasets. In: Kégl, B., Lapalme, G. (eds) Advances in Artificial Intelligence. Canadian AI 2005. Lecture Notes in Computer Science(), vol 3501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424918_14
Download citation
DOI: https://doi.org/10.1007/11424918_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25864-3
Online ISBN: 978-3-540-31952-8
eBook Packages: Computer ScienceComputer Science (R0)