Abstract
This paper presents an approach for target movement prediction by using Genetic Algorithms to generate the population of movement generation operators. In this approach, we use objective functions, not derivatives or other auxiliary knowledge, and apply probabilistic transition rules, not deterministic rules, for target movement prediction. Its performance has been experimentally evaluated through several experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bethke, A.D.: Genetic algorithms as function optimizers, Ph.D. Thesis, Dept. Computer and Communication Sciences, Univ. of Michigan (1981)
Brindle, A.: Genetic algorithms for function optimization, Ph.D. Thesis, Computer Science Dept., Univ. of Alberta (1981)
Baik, S.W., Bala, J., Hadjarian, A., Pachowicz, P.: Genetic Evolution Approach for Target Movement Prediction. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 678–681. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baik, S., Bala, J., Hadjarian, A., Pachowicz, P., Baik, R. (2005). Moving Target Prediction Using Evolutionary Algorithms. In: Kégl, B., Lapalme, G. (eds) Advances in Artificial Intelligence. Canadian AI 2005. Lecture Notes in Computer Science(), vol 3501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424918_22
Download citation
DOI: https://doi.org/10.1007/11424918_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25864-3
Online ISBN: 978-3-540-31952-8
eBook Packages: Computer ScienceComputer Science (R0)