Skip to main content

Sinogram Denoising of Cryo-Electron Microscopy Images

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Included in the following conference series:

Abstract

Cryo-electron microscopy has recently been recognized as a useful alternative to obtain three-dimensional density maps of macromolecular complexes, especially when crystallography and NMR techniques fail. The three-dimensional model is constructed from large collections of cryo-electron microscopy images of identical particles in random (and unknown) orientations.

The major problem with cryo-electron microscopy is that the images are very noisy as the signal-to-noise ratio can be below one. Thus, standard filtering techniques are not directly applicable. Traditionally, the problem of immense noise in the cryo-electron microscopy images has been tackled by clustering the images and computing the class averages. However, then one has to assume that the particles have only few preferred orientations. In this paper we propose a sound method for denoising cryo-electron microscopy images using their Radon transforms. The method assumes only that the images are from identical particles but nothing is assumed about the orientations of the particles. Our preliminary experiments show that the method can be used to improve the image quality even when the signal-to-noise ratio is very low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: Three-dimensional reconstruction of icosahedral. Microbiology and Molecular Biology Reviews 63, 862–922 (1999)

    Google Scholar 

  2. Frank, J.: Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Academic Press, London (1996)

    Google Scholar 

  3. Carazo, J.M., Sorzano, C.O., Rietzel, E., Schröder, R., Marabini, R.: Discrete tomography in electron microscopy. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms, and Applications. Applied and Numerical Harmonic Analysis, pp. 405–416. Birkhäuser, Basel (1999)

    Google Scholar 

  4. Crowther, R., DeRosier, D., Klug, A.: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proceedings of the Royal Society of London A 317, 319–340 (1970)

    Article  Google Scholar 

  5. Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E., Bamford, D.: Local average intensity-based method for identifying spherical particles in electron micrographs. Journal of Structural Biology 131, 126–134 (2000)

    Article  Google Scholar 

  6. Nicholson, W.V., Glaeser, R.M.: Review: Automatic particle detection in electron microscopy. Journal of Structural Biology 133, 90–101 (2001)

    Article  Google Scholar 

  7. Baker, T.S., Cheng, R.H.: A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. Journal of Structural Biology 116, 120–130 (1996)

    Article  Google Scholar 

  8. Doerschuk, P.C., Johnson, J.E.: Ab initio reconstruction and experimental design for cryo electron microscopy. IEEE Transactions on Information Theory 46, 1714–1729 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fuller, S.D., Butcher, S.J., Cheng, R.H., Baker, T.S.: Three-dimensional reconstruction of icosahedral particles – the uncommon line. Journal of Structural Biology 116, 48–55 (1996)

    Article  Google Scholar 

  10. van Heel, M.: Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 11–124 (1987)

    Google Scholar 

  11. Ji, Y., Marinescu, D.C., Chang, W., Baker, T.S.: Orientation refinement of virus structures with unknown symmetry. In: Proceedings of the International Parallel and Distributed Processing Symposium, pp. 49–56. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  12. Lanczycki, C.J., Johnson, C.A., Trus, B.L., Conway, J.F., Steven, A.C., Martino, R.L.: Parallel computing strategies for determining viral capsid structure by cryoelectron microscopy. IEEE Computational Science & Engineering 5, 76–91 (1998)

    Article  Google Scholar 

  13. Bellon, P.L., Cantele, F., Lanzavecchia, S.: Correspondence analysis of sonogram lines. Sinogram trajectories in factor space replace raw images in the orientation of projections of macromolecular assemblies. Ultramicroscopy 87, 187–197 (2001)

    Article  Google Scholar 

  14. Bellon, P.L., Lanzavecchia, S., Scatturin, V.: A two exposures technique of electron tomography from projections with random orientation and a quasi-Boolean angular reconstitution. Ultramicroscopy 72, 177–186 (1998)

    Article  Google Scholar 

  15. Lauren, P.D., Nandhakumar, N.: Estimating the viewing parameters of random, noisy projections of asymmetric objects for tomographic reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 417–430 (1997)

    Article  Google Scholar 

  16. Penczek, P.A., Zhu, J., Frank, J.: A common-lines based method for determining orientations for N > 3 particle projections simultaneously. Ultramicroscopy 63, 205–218 (1996)

    Article  Google Scholar 

  17. Thuman-Commike, P.A., Chiu, W.: Improved common line-based icosahedral particle image orientation estimation algorithms. Ultramicroscopy 68, 231–255 (1997)

    Article  Google Scholar 

  18. Mielikäinen, T., Ravantti, J., Ukkonen, E.: The computational complexity of orientation search in cryo-electron microscopy. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036, pp. 231–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Brady, M.L.: A fast discrete approximation algorithm for the Radon transform. SIAM Journal on Computing 27, 107–119 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Brandt, A., Dym, J.: Fast calculation of multiple line integrals. SIAM Journal on Computing 20, 1417–1429 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lanzavecchia, S., Tosoni, L., Bellon, P.L.: Fast sinogram computation and the sinogram-based alignment of images. Cabios 12, 531–537 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mielikäinen, T., Ravantti, J. (2005). Sinogram Denoising of Cryo-Electron Microscopy Images. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_130

Download citation

  • DOI: https://doi.org/10.1007/11424925_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics