Abstract
We present an improved inductive learning method to derive classification rules that correctly describe most of the examples belonging to a class and do not describe most of the examples not belonging to this class. The problem is represented as a modification of the set covering problems solved by a genetic algorithm. Its is employed to medical data on coronary disease, and the results seem to be encouraging.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Grefenstette, J.J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the 2nd International Conference on Genetic Algorithms, LEA, Cambridge, MA, pp. 14–21 (1987)
Balas, E.: Cutting planes from conditional bounds: a new approach to set covering. Mathematical Programming Study 12, 19–36 (1980)
Balas, E., Padberg, M.W.: Set partitioning - A survey. In: Christofides, N. (ed.) Combinatorial Optimisation. Wiley, New York (1979)
Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Technical Report, The Management School, Imperial College (1994)
Beasley, J.E.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94, 392–404 (1996)
Christofides, N., Korman, S.: A computational survey of methods for the set covering problem. Management Science 21, 591–599 (1975)
Chvatal, V.: A greedy heuristic for the set-covering problem. Math. of Oper. Res. 4(3), 233–235 (1979)
Garfinkel, R.S., Nemhauser, G.L.: Integer programming. John Wiley & Sons, New York-London-Sydney-Toronto (1978)
Grossman, T., Wool, A.: Computational experience with approximation algorithms for the set covering problem. Working paper, Theoretical Division and CNLS, Los Alamos National Laboratory (1995)
Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Proceedings of Fifth International Conference in Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 1994 Paris France, vol. 2, pp. 1047–1051 (1994)
Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Logic and Soft Computing, pp. 31–36. World Scientific, Singapore (1995)
Kacprzyk, J., Szkatuła, G.: An algorithm for learning from erroneous and incorrigible examples. Int. J. of Intelligent Syst. 11, 565–582 (1996)
Kacprzyk, J., Szkatuła, G.: An improved inductive learning algorithm with a preanalysis od data. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 157–166. Springer, Heidelberg (1997a)
Kacprzyk, J., Szkatuła, G.: Deriving IF-THEN rules for intelligent decision support via inductive learning. In: Kasabov, N., et al. (eds.) Progress in Connectionist-Based Information Systems Proceedings of ICONIP 1997, ANZIIS 1997 and ANNES 1997 Conference, Dunedin, New Zealand, vol. 2, pp. 818–821. Springer, Singapore (1997b)
Kacprzyk, J., Szkatuła, G.: IP1 - An Improved Inductive Learning Procedure with a Preprocessing of Data. In: Xu, L., Chan, L.W., King, I., Fu, A. (eds.) Intelligent Data Engineering and Learning. Perspectives on Financial Engineering and Data Mining Proceedings of IDEAL 1998, Hong Kong, pp. 385–392. Springer, Hong Kong (1998)
Kacprzyk, J., Szkatuła, G.: An inductive learning algorithm with a preanalysis od data. Int. J. of Knowledge - Based Intelligent Engineering Systems 3, 135–146 (1999)
Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Honolulu, Hawaii, pp. 181–186 (2002)
Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic and greedy algorithms. In: Jain, L.C., Kacprzyk, J. (eds.) New Learning Paradigms in Soft Computing, pp. 322–366. Physica-Verlag, Heidelberg (2002)
Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R., Carbonell, J., Mitchell, T.M. (eds.) Machine Learning. Tioga Press (1983)
Zadeh, L.A., Kacprzyk, J.: Computing with Words in Information/Intelligent Systems. vol. Foundations, vol. 2 Applications. Physica-Verlag, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kacprzyk, J., Szkatula, G. (2005). A Softened Formulation of Inductive Learning and Its Use for Coronary Disease Data. In: Hacid, MS., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds) Foundations of Intelligent Systems. ISMIS 2005. Lecture Notes in Computer Science(), vol 3488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425274_21
Download citation
DOI: https://doi.org/10.1007/11425274_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25878-0
Online ISBN: 978-3-540-31949-8
eBook Packages: Computer ScienceComputer Science (R0)